Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real‐time observations, morphological analysis, glycogen detection, filamentous‐actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.