In recent years, deep learning has been successfully used in order to classify partial discharges (PDs) for assessing the condition of insulation systems in different electrical equipment. However, fault diagnosis using deep learning is still challenging, as it requires a large amount of training data, which is difficult and expensive to obtain in the real world. This paper proposes a novel one-shot learning method for fault diagnosis using a small dataset of phase-resolved PDs (PRPDs) in a gas-insulated switchgear (GIS). The proposed method is based on a Siamese network framework, which employs a distance metric function for predicting sample pairs from the same PRPD class or different PRPD classes. Experimental results over the small PRPD dataset that was obtained from an ultra-high-frequency sensor in the GIS show that the proposed method achieves outstanding performance for PRPD fault diagnosis as compared with the previous methods.
In this study, we propose a method to recognize road environments with automotive frequency-modulated continuous wave (FMCW) radar systems. For automotive radar systems on the road, diverse road environments are observed. Each road environment generates unnecessary echoes known as clutter, and the magnitude distribution of received radar signal varies depending on road structures. Therefore, it is necessary to classify the road environment and adopt a target detection algorithm suitable for each road environment characteristic. To recognize the road environment in advance, it is necessary to identify the section where the road environment changes. In this paper, we define a changed road area as a transition region, and we classify the road environment and transition regions to improve the road environment recognition performance. Road environments are recognized by applying convolutional neural networks to the frequency-domain received signals of 77 GHz FMCW automotive radar systems. Experimental results in real-road environments demonstrate that the proposed method achieves 100% recognition performance, which is better if compared with that of the conventional methods. INDEX TERMS Automotive frequency-modulated continuous wave (FMCW) radar, road environment recognition, convolutional neural network.
In this paper, we propose a new anomaly detection method to detect the partial discharge in a gas-insulated switchgear. An autoencoder was used for anomaly detection and was modeled on the one-class classification problem. Based on the one-class classification scenario, in which the training data exploited the noise data only, the proposed autoencoder learned the low-dimensional latent information from the high-dimensional space of the input signal. Then, the reconstruction error was used as a fault indicator, and the threshold was determined using the partial discharge data. The performance of the proposed AE was verified by on-site noise and PRPD experiments, using an online UHF PD monitoring system in the realworld environment. The results showed that the proposed autoencoder not only achieved 86.75% detection performance for the on-site noise and partial discharge data in gas-insulated switchgears but also allowed better detection performance than the one-class support vector machine learning procedure by 40.5%.INDEX TERMS Partial discharge (PD), fault detection, gas-insulated switchgear (GIS), anomaly detection, autoencoder (AE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.