Primary EBV+ nodal T/NK-cell lymphoma (PTCL-EBV) is a poorly understood disease which shows features resembling extranodal NK/T-cell lymphoma (ENKTL) and is currently not recognized as a distinct entity but categorized as a variant of PTCL-NOS. Herein, we analyzed copy-number aberrations (n=77) with focus on global measures of genomic instability (GI) and homologous recombination deficiency (HRD) and performed gene expression (n=84) and EBV miRNA expression profiling (n=24) and targeted mutational analysis (n=16) to further characterize PTCL-EBV in relation to ENKTL and PTCL-NOS. Multivariate analysis revealed a significantly worse outcome of PTCL-EBV compared to PTCL-NOS (P=0.002) but not ENKTL. Remarkably, PTCL-EBV exhibited significantly lower GI and HRD scores compared to ENKTL and PTCL-NOS. Gene Set Enrichment Analysis revealed many immune-related pathways, interferon alpha/gamma response, and IL6_JAK_STAT3 signaling to be significantly upregulated in PTCL-EBV and correlated with lower GI-scores. We also identified NFκB-associated genes, BIRC3, NFκB1 (p50) and CD27, and their proteins to be upregulated in PTCLEBV. PTCL-EBV demonstrated mostly type 2 EBV latency pattern and, strikingly, exhibited downregulated expression of most EBV miRNAs compared to ENKTL and their target genes were also enriched in immune-related pathways. PTCL-EBV also showed frequent mutations of TET2, PIK3CD and STAT3, and are microsatellite stable. Overall, the poor outcome, low genomic instability, upregulation of immune pathways and downregulation of EBV miRNAs are distinctive features of PTCL-EBV. Our data support the consideration of PTCL-EBV as a distinct entity, provide novel insights into the disease pathogenesis and offer potential new therapeutic targets for this tumor.
B-cell receptor (BCR) signalling is critical for the survival of B-cell lymphomas and is a therapeutic target of drugs such as Ibrutinib. However, the role of T-cell receptor (TCR) signalling in the survival of T/Natural Killer (NK) lymphomas is not clear. ZAP-70 (zeta associated protein-70) is a cytoplasmic tyrosine kinase with a critical role in T-cell receptor (TCR) signalling. It has also been shown to play a role in normal NK cell signalling and activation. High ZAP-70 expression has been detected by immunohistochemistry in peripheral T cell lymphoma (PTCL) and NK cell lymphomas (NKTCL). We therefore, studied the role of TCR pathways in mediating the proliferation and survival of these malignancies through ZAP-70 signalling. ZAP-70 protein was highly expressed in T cell lymphoma cell lines (JURKAT and KARPAS-299) and NKTCL cell lines (KHYG-1, HANK-1, NK-YS, SNK-1 and SNK-6), but not in multiple B-cell lymphoma cell lines. siRNA depletion of ZAP-70 suppressed the phosphorylation of ZAP-70 substrates, SLP76, LAT and p38MAPK, but did not affect cell viability or induce apoptosis in these cell lines. Similarly, while stable overexpression of ZAP-70 mediates increased phosphorylation of target substrates in the TCR pathway, it does not promote increased survival or growth of NKTCL cell lines. The epidermal growth factor receptor (EGFR) inhibitor Gefitinib, which has off-target activity against ZAP-70, also did not show any differential cell kill between ZAP-70 overexpressing (OE) or knockdown (KD) cell lines. Whole transcriptome RNA sequencing highlighted that there was very minimal differential gene expression in three different T/NK cell lines induced by ZAP-70 KD. Importantly, ZAP-70 KD did not significantly enrich for any downstream TCR related genes and pathways. Altogether, this suggests that high expression and constitutive signalling of ZAP-70 in T/NK lymphoma is not critical for cell survival or downstream TCR-mediated signalling and gene expression. ZAP-70 therefore may not be a suitable therapeutic target in T/NK cell malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.