Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N-body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit.
Gender equity remains a major issue facing the field of planetary science, and there is broad interest in addressing gender disparities within space science and related disciplines. Many studies of these topics have been performed by professional planetary scientists who are relatively unfamiliar with research in fields such as gender studies and sociology. As a result, they adopt a normative view of gender as a binary choice of 'male' or 'female,' leaving planetary scientists whose genders do not fit within that model out of such research entirely. Reductive frameworks of gender and an overemphasis on quantification as an indicator of gendered phenomena are harmful to people of marginalized genders, especially those who live at the intersections of multiple axes of marginalization such as race, disability, and socioeconomic status. In order for the planetary science community to best serve its marginalized members as we move into the next decade, a new paradigm must be established. This paper aims to address the future of gender equity in planetary science by recommending better survey practices and institutional policies based on a more profound approach to gender.
Recent ground- and space-based observations show that stars with multiple planets are common in the Galaxy. Most of these observational methods are biased toward detecting large planets near to their host stars. Because of these observational biases, these systems can hide small, close-in planets or far-orbiting (big or small) companions. These planets can still exert dynamical influence on known planets and have such influence exerted on them in turn. In certain configurations, this influence can destabilize the system; in others, the star’s gravitational influence can instead further stabilize the system. For example, in systems with planets close to the host star, effects arising from general relativity can help to stabilize the configuration. We derive criteria for hidden planets orbiting both beyond and within known planets that quantify how strongly general relativistic effects can stabilize systems that would otherwise be unstable. As a proof of concept, we investigate the several planets in a system based on Kepler-56 and show that the outermost planet will not disrupt the system even at high eccentricities, and we show that an Earth-radius planet could be stable within this system if it orbits below 0.08 au. Furthermore, we provide specific predictions to known observed systems by constraining the parameter space of possible hidden planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.