In mental health practice, both pharmacological and non-pharmacological treatments are aimed at improving neuropsychological symptoms, including cognitive and emotional impairments. However, at present there is no established neuropsychological test battery that comprehensively covers multiple affective domains relevant in a range of disorders. Our objective was to generate a standardized test battery, comprised of existing, adapted and novel tasks, to assess four core domains of affective cognition (emotion processing, motivation, impulsivity and social cognition) in order to facilitate and enhance treatment development and evaluation in a broad range of neuropsychiatric disorders. The battery was administered to 200 participants aged 18–50 years (50% female), 42 of whom were retested in order to assess reliability. An exploratory factor analysis identified 11 factors with eigenvalues greater than 1, which accounted for over 70% of the variance. Tasks showed moderate to excellent test-retest reliability and were not strongly correlated with demographic factors such as age or IQ. The EMOTICOM test battery is therefore a promising tool for the assessment of affective cognitive function in a range of contexts.
The vast personal and economic burden of mood disorders is largely caused by their under- and misdiagnosis, which is associated with ineffective treatment and worsening of outcomes. Here, we aimed to develop a diagnostic algorithm, based on an online questionnaire and blood biomarker data, to reduce the misdiagnosis of bipolar disorder (BD) as major depressive disorder (MDD). Individuals with depressive symptoms (Patient Health Questionnaire-9 score ≥5) aged 18–45 years were recruited online. After completing a purpose-built online mental health questionnaire, eligible participants provided dried blood spot samples for biomarker analysis and underwent the World Health Organization World Mental Health Composite International Diagnostic Interview via telephone, to establish their mental health diagnosis. Extreme Gradient Boosting and nested cross-validation were used to train and validate diagnostic models differentiating BD from MDD in participants who self-reported a current MDD diagnosis. Mean test area under the receiver operating characteristic curve (AUROC) for separating participants with BD diagnosed as MDD (N = 126) from those with correct MDD diagnosis (N = 187) was 0.92 (95% CI: 0.86–0.97). Core predictors included elevated mood, grandiosity, talkativeness, recklessness and risky behaviour. Additional validation in participants with no previous mood disorder diagnosis showed AUROCs of 0.89 (0.86–0.91) and 0.90 (0.87–0.91) for separating newly diagnosed BD (N = 98) from MDD (N = 112) and subclinical low mood (N = 120), respectively. Validation in participants with a previous diagnosis of BD (N = 45) demonstrated sensitivity of 0.86 (0.57–0.96). The diagnostic algorithm accurately identified patients with BD in various clinical scenarios, and could help expedite accurate clinical diagnosis and treatment of BD.
Economic games such as the Ultimatum Game (UG) and Prisoner’s Dilemma (PD) are widely used paradigms for studying fairness and cooperation. Monetary versions of these games involve two players splitting an arbitrary sum of money. In real life, however, people’s propensity to engage in cooperative behavior depends on their effort and contribution; factors that are well known to affect perceptions of fairness. We therefore sought to explore the impact of relative monetary contributions by players in the UG and PD. Adapted computerized UG and PD games, in which relative contributions from each player were manipulated, were administered to 200 participants aged 18–50 years old (50% female). We found that players’ contribution had large effects on cooperative behavior. Specifically, cooperation was greater amongst participants when their opponent had contributed more to joint earnings. This was manifested as higher acceptance rates and higher offers in the UG; and fewer defects in the PD compared to when the participant contributed more. Interestingly, equal contributions elicited the greatest sensitivity to fairness in the UG, and least frequent defection in the PD. Acceptance rates correlated positively with anxiety and sex differences were found in defection behavior. This study highlights the feasibility of computerized games to assess cooperative behavior and the importance of considering cooperation within the context of effortful contribution.
Background Perinatal mental health symptoms commonly remain underdiagnosed and undertreated in maternity care settings in the United Kingdom, with outbreaks of disease, like the COVID-19 pandemic, further disrupting access to adequate mental health support. Digital technologies may offer an innovative way to support the mental health needs of women and their families throughout the perinatal period, as well as assist midwives in the recognition of perinatal mental health concerns. However, little is known about the acceptability and perceived benefits and barriers to using such technologies. Objective The aim of this study was to conduct a mixed methods evaluation of the current state of perinatal mental health care provision in the United Kingdom, as well as users’ (women and partners) and midwives’ interest in using a digital mental health assessment throughout the perinatal period. Methods Women, partners, and midwives were recruited to participate in the study, which entailed completing an online survey. Quantitative data were explored using descriptive statistics. Open-ended response data were first investigated using thematic analysis. Resultant themes were then mapped onto the components of the Capability, Opportunity, and Motivation Behavior model and summarized using descriptive statistics. Results A total of 829 women, 103 partners, and 90 midwives participated in the study. The provision of adequate perinatal mental health care support was limited, with experiences varying significantly across respondents. There was a strong interest in using a digital mental health assessment to screen, diagnose, and triage perinatal mental health concerns, particularly among women and midwives. The majority of respondents (n=781, 76.42%) expressed that they would feel comfortable or very comfortable using or recommending a digital mental health assessment. The majority of women and partners showed a preference for in-person consultations (n=417, 44.74%), followed by a blended care approach (ie, both in-person and online consultations) (n=362, 38.84%), with fewer participants preferring online-only consultations (n=120, 12.88%). Identified benefits and barriers mainly related to physical opportunity (eg, accessibility), psychological capability (eg, cognitive skills), and automatic motivation (eg, emotions). Conclusions This study provides proof-of-concept support for the development and implementation of a digital mental health assessment to inform clinical decision making in the assessment of perinatal mental health concerns in the United Kingdom.
Background Given the role digital technologies are likely to play in the future of mental health care, there is a need for a comprehensive appraisal of the current state and validity (ie, screening or diagnostic accuracy) of digital mental health assessments. Objective The aim of this review is to explore the current state and validity of question-and-answer–based digital tools for diagnosing and screening psychiatric conditions in adults. Methods This systematic review was based on the Population, Intervention, Comparison, and Outcome framework and was carried out in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, Embase, Cochrane Library, ASSIA, Web of Science Core Collection, CINAHL, and PsycINFO were systematically searched for articles published between 2005 and 2021. A descriptive evaluation of the study characteristics and digital solutions and a quantitative appraisal of the screening or diagnostic accuracy of the included tools were conducted. Risk of bias and applicability were assessed using the revised tool for the Quality Assessment of Diagnostic Accuracy Studies 2. Results A total of 28 studies met the inclusion criteria, with the most frequently evaluated conditions encompassing generalized anxiety disorder, major depressive disorder, and any depressive disorder. Most of the studies used digitized versions of existing pen-and-paper questionnaires, with findings revealing poor to excellent screening or diagnostic accuracy (sensitivity=0.32-1.00, specificity=0.37-1.00, area under the receiver operating characteristic curve=0.57-0.98) and a high risk of bias for most of the included studies. Conclusions The field of digital mental health tools is in its early stages, and high-quality evidence is lacking. International Registered Report Identifier (IRRID) RR2-10.2196/25382
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.