Staphylococcus aureus is a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed an in silico typing scheme for the software SeqSphere ؉ (Ridom GmbH, Münster, Germany). The implemented target genes (n ؍ 182) correspond to those queried by the Identibac S. aureus Genotyping DNA microarray (Alere Technologies, Jena, Germany). The in silico scheme was evaluated by comparing the typing results of microarray and of WGS for 154 human S. aureus isolates. A total of 96.8% (n ؍ 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosome mec element types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. Staphylococcus aureus is a Gram-positive facultative pathogenic bacterium that is responsible for a high percentage of hospitaland community-acquired infections worldwide. An infection with S. aureus may manifest itself in a broad variety of diseases, ranging from rather harmless local skin infections to severe bacteremia or intoxications (1). This extensive spectrum of virulence is owed, in part, to the bacterium's individual equipment with virulence factors. Analyzing these virulence factors is difficult because purified staphylococcal toxins do not essentially cause distinctive symptoms when administered in the absence of the bacterium, and the specific knockout of single virulence factors does not necessarily reduce the bacterial virulence (2). Thus, it seems that the combination of different virulence factors, their regulation and transcription, and their allelic variants play a crucial role in determining the eventually expressed virulence phenotype. Therefore, it is important to determine not only the presence or absence of single key factors, such as, e.g., Panton-Valentine leucocidin (PVL) or certain enterotoxins, but to obtain a comprehensive picture of the exact allelic variants of as many virulence-associated genes and their regulatory systems as possible. With regar...
Clonal clusters and gene repertoires of Staphylococcus aureus are essential to understand disease and are well characterized in industrialized countries but poorly analysed in developing regions. The objective of this study was to compare the molecular-epidemiologic profiles of S. aureus isolates from Sub-Saharan Africa and Germany. S. aureus isolates from 600 staphylococcal carriers and 600 patients with community-associated staphylococcal disease were characterized by DNA hybridization, clonal complex (CC) attribution, and principal component (PCA)-based gene repertoire analysis. 73% of all CCs identified representing 77% of the isolates contained in these CCs were predominant in either African or German region. Significant differences between African versus German isolates were found for alleles encoding the accessory gene regulator type, enterotoxins, the Panton-Valentine leukocidin, immune evasion gene cluster, and adhesins. PCA in conjunction with silhouette analysis distinguished nine separable PCA clusters, with five clusters primarily comprising of African and two clusters of German isolates. Significant differences between S. aureus lineages in Africa and Germany may be a clue to explain the apparent difference in disease between tropical/(so-called) developing and temperate/industrialized regions. In low-resource countries further clinical-epidemiologic research is warranted not only for neglected tropical diseases but also for major bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.