Simple trigonometrical arguments verify that in a triangle the trisectors, proximal to sides respectively, meet at the vertices of an equilateral triangle by showing that the length of each side is 8R times the sines of the angles between the sides of the triangle and the trisectors that determine it, where R is the radius of the circumcircle of the triangle. The 27 meeting points of the trisectors, proximal to a side, determine 18 such equilaterals, which in pairs share a vertex having two collinear sides and the third parallel. Hence these points are located 6 by 6 on three triples of parallel lines. RESUMEN Argumentos trigonométricos simples verifican que en un triángulo los trisectores, próximos a los lados respectivamente, se encuentran en los vértices de un triángulo equilátero mostrando que la longitud de cada lado es 8R veces los senos de losángulos entre los lados del triángulo y los trisectores que lo determinan, donde R es el radio del circuncírculo del triángulo. Los 27 puntos de encuentro de los trisectores, próximos a un lado, determinan 18 tales equiláteros, que a pares comparten un vértice teniendo dos lados colineales y el tercero paralelo. Luego estos puntos están ubicados 6 por 6 en tres triples de líneas paralelas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.