Seven plants in the top rank were selected from the “MANOSROI III” database using the two Thai keywords which meant impotence and sexual tonic. Boesenbergia rotunda (L.) Mansf. extract [EDP1-001(1)] gave the highest PDE inhibition activity of 4.36-fold sildenafil, a standard anti-impotence drug. Plumbago indica Linn. extract [EDP2-001(1)] exhibited the highest NO release stimulation activity of 666.85% which was 1.50-fold acetylcholine, a standard drug. Most selected plant extracts were nontoxic to EA.hy926 cells at 1.0 mg/mL. EDP1-001(1) exhibited the LD50 value of acute oral toxicity in male ICR mice of over 5,000 mg/kg body weight. EDP1-001(1) also indicated the improvement of sexual behaviors in the paroxetine-induced sexual dysfunction male mice with the evaluation of number of courtships (NC), mount frequency (MF), intromission frequency (IF), and ejaculatory frequency (EF) at 87.67 ± 6.17, 121.00 ± 23.50, 36.00 ± 3.21, and 13.67 ± 2.96 which were 2.63-, 1.27-, 0.53-, and 0.62-fold sildenafil-treated mice at day 14 of the treatments, respectively. The present study has not only confirmed the traditional use of Thai plants for the treatment of ED but also indicated the potential and application of the “MANOSROI III” database for Thai plant selection to be developed as ED food supplements.
Trans-activator of transcription (Tat) is a cell penetrating peptide which can translocate and carry macromolecular cargoes through cell membranes. This study investigated the hypoglycemic activity of orally delivered insulin - Tat mixture in alloxan-induced diabetic mice. The mixtures of insulin and Tat at 1:1, 1:3 and 1:6 molar ratios were given orally at the insulin doses ranging from 1-200 IU/kg. The fasting blood glucose (FBG) levels were measured at initial, 1, 2, 4, 6, and 12 h after administration. At 1:3 molar ratio of the mixture and after 12 h of administration, insulin at 200 IU/kg showed the highest with prolonged hypoglycemic activity of 74.0±10.3% FBG reduction (2.18 folds of subcutaneously injected (SC) insulin). Free insulin administered orally did not show any hypoglycemic activity. The mixtures at the insulin doses of 100 and 50 IU/kg also showed potent FBG reduction of 73.8±8.2 and 71.3±16.9% at 12 h after administration (2.18 and 2.10 folds of SC insulin, respectively). After incubation with Mono-Mac-6 cells, only the -mixtures but not the free insulin showed intra-cellular insulin uptake, indicating the insulin penetration through the cell membranes via Tat. In simulated gastric fluid, the insulin content in the mixture was not found, demonstrating the degradation of insulin in the gastric environments. Insulin may be absorbed at upper gastrointestinal tract facilitated by Tat. The potent and prolonged hypoglycemic activity of insulin co-administered orally with Tat can be further developed as an effective oral insulin delivery system.
This study aimed to investigate the synergistic effect of trans-activator of transcription (Tat) and niosomes for the improvement of hypoglycemic activity of orally delivered human insulin. The elastic anionic niosomes composing of Tween 61/cholesterol/dicetyl phosphate/sodium cholate at 1:1:0.05:0.02 molar ratio loaded with insulin-Tat mixture (1:3 molar ratio) was prepared. Deformability of the elastic anionic niosomes decreased after loaded with the mixture of 1.35 times. For the in vitro release, the insulin (T 10 ¼ 4 h) loaded in the elastic anionic niosomes indicated the slower release rate than insulin in the mixture (T 10 ¼ 3 h) loaded in niosomes. At room temperature (30 ± 2 C), the mixture loaded in elastic anionic niosomes was more chemical stable than the free mixture of 1.3, 1.4 and 1.7 times after stored for 4, 8 and 12 weeks, respectively. Oral administration in the alloxan-induced diabetic mice of the mixture loaded in elastic anionic niosomes with the insulin doses at 25, 50 and 100 IU/kg body weight indicated significant hypoglycemic activity with the percentage fasting blood glucose reduction of 1.95, 2.10 and 2.10 folds of the subcutaneous insulin injection at 12 h, respectively. This study has demonstrated the synergistic benefits of Tat and elastic anionic niosomes for improving the hypoglycemic activity of the orally delivered human insulin as well as the stability enhancement of human insulin when stored at high temperature. The results from this study can be further developed as an effective oral insulin delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.