To develop a culture system for bone marrow (BM) cell expansion, we examined the effect of growth factors (GFs) on the proliferation and differentiation of BM cells cultured in three-dimensional (3D) scaffolds of porous polyvinyl formal (PVF) resin. Murine BM cells were cultured for 2 weeks in the PVF resin or in culture dishes as a control, in the presence or absence of 4 GFs (erythropoietin, stem cell factor, interleukin [IL]-3, and IL-6). These GFs remarkably stimulated cell proliferation both in PVF and dish cultures. In addition, the PVF cultures showed enhanced cell proliferation in comparison with the corresponding dish cultures. Moreover, PVF cultures with GFs revealed the highest number of colony-forming units and the highest percentage of hematopoietic progenitor cells (HPCs) among all the cultures examined. Therefore, this 3D PVF culture system with GFs is considered as a potential alternative method for the ex vivo expansion of HPCs.
To establish an ex vivo expansion method of haematopoietic progenitor cells (HPCs) and erythroid cells, three-dimensional (3D) cultures of mouse bone marrow cells were performed, employing a porous polyvinyl formal (PVF) resin as a scaffold. In these cultures, the effects of oxygen concentration and co-cultures with stromal cells on the expansion of HPCs and erythroid cells were investigated. When bone marrow cells were cultured under 3D conditions, HPCs and erythroid cells expanded without supplementation of exogenous cytokines, irrespective of the presence of stromal cells. On the contrary, slight expansion of HPCs or erythroid cells was observed in monolayer cultures as controls, indicating that the 3D cultures using the PVF scaffold were far better in expanding HPCs and erythroid cells than the monolayer cultures. Under hypoxic conditions, bone marrow stromal cells allowed for a 3D culture of erythroid cells and HPCs at higher cell densities compared to cultures without stromal cells, and the duration of the expansion of HPCs and erythroid cells after initiating the 3D co-cultures was prolonged. The number of these cells increased throughout the culture period up to 3 weeks under hypoxic conditions, although the number decreased after 2 weeks under normoxic conditions. In conclusion, the 3D co-culture method of haematopoietic cells with stromal cells under hypoxic conditions was confirmed to be effective in expanding HPCs and erythroid cells, and this method seemed to be useful for developing an ex vivo expansion method for haematopoietic cells.
A new type of bone marrow cell culture system was developed by using a highly porous substrate matrix, i.e., porous polyvinyl formal (PVF) resin. Murine bone marrow (BM) cells were cultured without the use of exogenous growth factors in a three-dimensional matrix support made of collagen coated porous PVF resin. To examine the optimal conditions for highest stromal cell density, short-term and long-term in vitro culture experiments using PVF were performed. In the short-term culture experiments, it was found that cubes of PVF (10 x 10 x 2 mm and 130 microm in pore size) coated with type I collagen with a seeding density of 2x10(7) BM cells offered the most appropriate culture conditions. In the long-term cultures, BM cells in PVF maintained their viability for up to 6 weeks. In another series of re-inoculation experiments, freshly isolated BM cells were inoculated onto the already developed stromal layer. In this study, a higher cell density of the stromal layer was obtained in the PVF culture compared with those in the control dish culture. Based upon the results of in vitro experiments, in vivo transplantation studies were also performed. Histologic examinations of the subcutaneously transplanted PVF with stroma revealed host derived hematopoiesis inside the PVF matrix. Moreover, survival of approximately 15% of the transplanted BM cells that were cultured in PVF were confirmed in X-ray irradiated recipients. From these results, it is suggested that PVF resin is a promising three-dimensional substrate for BM cell culture and that it can maintain hematopoietic stem cells or progenitor cells after transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.