N-linked glycosylation is one of the predominant post-translational modifications involved in a number of biological functions. Since experimental characterization of glycosites is challenging, glycosite prediction is crucial. Several predictors have been made available and report high performance. Most of them evaluate their performance at every asparagine in protein sequences, not confined to asparagine in the N-X-S/T sequon. In this paper, we present N-GlyDE, a two-stage prediction tool trained on rigorously-constructed non-redundant datasets to predict N-linked glycosites in the human proteome. The first stage uses a protein similarity voting algorithm trained on both glycoproteins and non-glycoproteins to predict a score for a protein to improve glycosite prediction. The second stage uses a support vector machine to predict N-linked glycosites by utilizing features of gapped dipeptides, pattern-based predicted surface accessibility, and predicted secondary structure. N-GlyDE’s final predictions are derived from a weight adjustment of the second-stage prediction results based on the first-stage prediction score. Evaluated on N-X-S/T sequons of an independent dataset comprised of 53 glycoproteins and 33 non-glycoproteins, N-GlyDE achieves an accuracy and MCC of 0.740 and 0.499, respectively, outperforming the compared tools. The N-GlyDE web server is available at http://bioapp.iis.sinica.edu.tw/N-GlyDE/.
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.