Since the beginning of 2020, the COVID-19 pandemic has caused unprecedented global disruption with considerable impact on human activities. However, natural hazards and related disasters do not wait for SARS-CoV-2 to vanish, resulting in the emergence of many conflicting issues between earthquake emergency response actions and pandemic mitigation measures. In this study, these conflicting issues are highlighted through the cases of four earthquakes that struck Greece at different phases of the pandemic. The earthquake effects on the local population and on the natural environment and building stock form ideal conditions for local COVID-19 outbreaks in earthquake-affected communities. However, the implementation of response actions and mitigation measures in light of a multi-hazard approach to disaster risk reduction and disaster risk management has led not only to the maintenance of pre-existing low viral load in the earthquake-affected areas, but in some cases even to their reduction. This fact suggests that the applied measures are good practice and an important lesson for improving disaster management in the future. Taking into account the aforementioned, a series of actions are proposed for the effective management of the impact of a geological hazard in the midst of an evolving biological hazard with epidemiological characteristics similar to the COVID-19 pandemic.
On 30 October 2020, an M w = 7.0 earthquake struck the Eastern Aegean Sea with considerable impact on Samos Island in Greece and the area of Izmir in Turkey. It was the most lethal seismic event in 2020 worldwide, and the largest and most destructive in the Aegean Sea since the 1955 earthquake that also affected both countries. The Civil Protection authorities in Greece and Turkey were effectively mobilized responding to the earthquake emergency. The main response actions comprised initial announcements of the earthquake and first assessment of the impact, provision of civil protection guidelines through emergency communication services, search and rescue operations,medical care, set up of emergency shelters and provisions of essential supplies, psychological support, as well as education, training activities and financial support to the affected population. From the comparison of the Civil Protection framework and the implemented response actions, it is seen that actions at both sides of the eastern Aegean Sea, followed a single-hazard approach in disaster management with similar response activities coordinated by a main Civil Protection agency, which was in close cooperation with the respective authorities at a national, regional and local level. Based on the presented information, it is concluded that the post-earthquake response and emergency management were satisfactory in both countries, with valuable lessons learnt ahead of the next major earthquake. To this end, many aspects can be further addressed to enhance community resilience and introduce a multi-hazard approach in (natural and man-made) disaster management.
Effective and efficient management of post-disaster damage and loss data is a key component of disaster risk reduction and climate change adaptation policies to fulfil the requirements of the Sendai Framework, Sustainable Development Goals, and more recently, the European Climate Law. However, the reality of organized and structured damage and loss data collection is still in its infancy. In the era of rapid technological improvements, with overwhelming volumes and channels of data, we still record a lack of basic figures of disaster losses at the scale, granularity and level of detail needed for most applications. First, a theoretical overview of data science applied to disaster risk management and the description of collection procedures and use of damage data for buildings in the case of earthquakes for Italy and Greece are provided. Second, the Information System (IS) which is intended to enhance damage and loss data collection and management proposed by the LODE (Loss Data Enhancement for Disaster Risk Reduction and Climate Change Adaptation) project is illustrated. The IS is described in detail, starting from the stakeholder consultation to elicit the requirements, to the system’s architecture, design and implementation. The IS provides a comprehensive tool to input and query multisectoral post-disaster damage and loss data at relevant spatial and temporal scales. The part of the IS devoted to building damage is described in depth showing how obstacles and difficulties highlighted in the collection and use of data in the Greek and the Italian case have been approached and solved. Finally, further developments of the IS and its background philosophy are discussed, including the need for institutionalized damage data collection, engineering of the developed software and re-engineering of current damage and loss data practices.
<p>On October 30, 2020, an Mw=6.9 earthquake struck the eastern Aegean Sea. It was the largest earthquake in Europe and the deadliest worldwide in 2020, as it resulted in 119 fatalities (117 in Turkey, 2 in Greece) from partial or total building collapse. Moreover, it generated environmental effects and damage to the built environment in both countries. The primary earthquake environmental effects included permanent surface deformation and coseismic surface ruptures, while the secondary effects comprised tsunami, slope failures, liquefaction phenomena, hydrological anomalies and ground cracks.</p><p>Every time a strong earthquake strikes, disaster management plans for emergency response tested in drills are applied under real conditions and on large scale. Immediately after the 2020 Samos earthquake, Greek authorities launched the largest mobilization of resources for assisting the affected population since the initiation of the COVID-19 pandemic in Greece.</p><p>Public authorities from all administration levels, civil protection agencies as well as security and armed forces were mobilized. All emergency plans for protection of life, health and property of the affected population were applied according to the existing legislation framework. The immediate response comprised search and rescue operations, first-aid treatment and medical care, provision of emergency supplies, establishment of emergency shelters, building inspections and assessment of damage extent. Moreover, the Greek government announced immediate relief measures and financial assistance for reconstruction and repairs.</p><p>The local population and responders were exposed to geohazards including the earthquake, the subsequent tsunami and aftershocks among other effects and to the evolving COVID-19 pandemic. The situation was more serious as there were many contradicting issues in the emergency response phase. Actions usually applied in the pre-pandemic period are in contradiction with the main measures for preventing SARS-CoV-2 transmission. The novel coronavirus adds extra risk to these life-saving activities. Thus, these actions had to adapt to the newly introduced conditions and adopt provisional measures for mitigation and elimination of COVID-19 consequences.</p><p>This study focuses on the emergency response actions taken shortly after the earthquake amid the COVID-19 pandemic. They comprised establishment of the operational centres and emergency shelters in outdoor places, mandatory mask wearing indoors and outdoors at all times by all responders, immediate housing of homeless in hotels and touristic facilities in order to maintain social distancing, provision of protective equipment against COVID-19 transmission in responders and the affected population among others.</p><p>Based on the officially reported laboratory-confirmed daily COVID-19 cases in the earthquake-affected area during the pre- and post- disaster period, it is concluded that the impact of the natural hazards on the evolution of the pandemic in the affected area was negligible. The viral load was low and no increase of the infection rate was recorded.</p><p>From the aforementioned, it is concluded that the disaster management policy amid pandemic in Greece proved to be more efficient than thought with a well-planned and well-structured procedure for dealing not only with earthquakes amid pandemic, but also with other types of disasters induced by natural hazards. This approach could be used as a guide for similar compound emergencies worldwide.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.