Advanced age is associated with a higher incidence of stroke and worse functional outcomes. Vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a potential method to improve recovery after brain injury but to date has only been evaluated in young rats. Here, we evaluated whether VNS paired with rehabilitative training would improve recovery of forelimb function after ischemic lesion of the motor cortex in rats 18 months of age. Rats were trained to perform the isometric pull task, an automated, quantitative measure of volitional forelimb strength. Once proficient, rats received an ischemic lesion of the motor cortex and underwent rehabilitative training paired with VNS for 6 weeks. VNS paired with rehabilitative training significantly enhances recovery of forelimb function after lesion. Rehabilitative training without VNS results in a 34% ± 19% recovery, whereas VNS paired with rehabilitative training yields a 98% ± 8% recovery of prelesion of forelimb function. VNS does not significantly reduce lesion size. These findings demonstrate that VNS paired with rehabilitative training enhances motor recovery in aged subjects in a model of stroke and may suggest that VNS therapy may effectively translate to elderly stroke patients.
Background. Rodents are the primary animal model of corticospinal injury and repair, yet current behavioral tests do not show the large deficits after injury observed in humans. Forearm supination is critical for hand function and is highly impaired by corticospinal injury in both humans and rats. Current tests of rodent forelimb function do not measure this movement. Objective. To determine if quantification of forelimb supination in rats reveals large-scale functional loss and partial recovery after corticospinal injury. Methods. We developed a knob supination device that quantifies supination using automated and objective methods. Rats in a reaching box have to grasp and turn a knob in supination in order to receive a food reward. Performance on this task and the single pellet reaching task were measured before and after 2 manipulations of the pyramidal tract: a cut lesion of 1 pyramid and inactivation of motor cortex using 2 different drug doses. Results. A cut lesion of the corticospinal tract produced a large deficit in supination. In contrast, there was no change in pellet retrieval success. Supination function recovered partially over 6 weeks after injury, and a large deficit remained. Motor cortex inactivation produced a dose-dependent loss of knob supination; the effect on pellet reaching was more subtle. Conclusions. The knob supination task reveals in rodents 3 signature hand function changes observed in humans with corticospinal injury: (1) large-scale loss with injury, (2) partial recovery in the weeks after injury, and (3) loss proportional to degree of dysfunction.
Associative plasticity occurs when two stimuli converge on a common neural target. Previous efforts to promote associative plasticity have targeted cortex, with variable and moderate effects. In addition, the targeted circuits are inferred, rather than tested directly. In contrast, we sought to target the strong convergence between motor and sensory systems in the spinal cord. We developed spinal cord associative plasticity, precisely timed pairing of motor cortex and dorsal spinal cord stimulations, to target this interaction. We tested the hypothesis that properly timed paired stimulation would strengthen the sensorimotor connections in the spinal cord and improve recovery after spinal cord injury. We tested physiological effects of paired stimulation, the pathways that mediate it, and its function in a preclinical trial. Subthreshold spinal cord stimulation strongly augmented motor cortex evoked muscle potentials at the time they were paired, but only when they arrived synchronously in the spinal cord. This paired stimulation effect depended on both cortical descending motor and spinal cord proprioceptive afferents; selective inactivation of either of these pathways fully abrogated the paired stimulation effect. Spinal cord associative plasticity, repetitive pairing of these pathways for 5 or 30 min in awake rats, increased spinal excitability for hours after pairing ended. To apply spinal cord associative plasticity as therapy, we optimized the parameters to promote strong and long-lasting effects. This effect was just as strong in rats with cervical spinal cord injury as in uninjured rats, demonstrating that spared connections after moderate spinal cord injury were sufficient to support plasticity. In a blinded trial, rats received a moderate C4 contusive spinal cord injury. Ten days after injury, they were randomized to 30 min of spinal cord associative plasticity each day for 10 days or sham stimulation. Rats with spinal cord associative plasticity had significantly improved function on the primary outcome measure, a test of dexterity during manipulation of food, at 50 days after spinal cord injury. In addition, rats with spinal cord associative plasticity had persistently stronger responses to cortical and spinal stimulation than sham stimulation rats, indicating a spinal locus of plasticity. After spinal cord associative plasticity, rats had near normalization of H-reflex modulation. The groups had no difference in the rat grimace scale, a measure of pain. We conclude that spinal cord associative plasticity strengthens sensorimotor connections within the spinal cord, resulting in partial recovery of reflex modulation and forelimb function after moderate spinal cord injury. Since both motor cortex and spinal cord stimulation are performed routinely in humans, this approach can be trialled in people with spinal cord injury or other disorders that damage sensorimotor connections and impair dexterity.
Tasks that accurately measure dexterity in animal models are critical to understand hand function. Current rat behavioral tasks that measure dexterity largely use video analysis of reaching or food manipulation. While these tasks are easy to implement and are robust across disease models, they are subjective and laborious for the experimenter. Automating traditional tasks or creating new automated tasks can make the tasks more efficient, objective, and quantitative. Since rats are less dexterous than primates, central nervous system (CNS) injury produces more subtle deficits in dexterity, however, supination is highly affected in rodents and crucial to hand function in primates. Therefore, we designed a semi-automated task that measures forelimb supination in rats. Rats are trained to reach and grasp a knob-shaped manipulandum and turn the manipulandum in supination to receive a reward. Rats can acquire the skill within 20 ± 5 days. While the early part of training is highly supervised, much of the training is done without direct supervision. The task reliably and reproducibly captures subtle deficits after injury and shows functional recovery that accurately reflects clinical recovery curves. Analysis of data is performed by specialized software through a graphical user interface that is designed to be intuitive. We also give solutions to common problems encountered during training, and show that minor corrections to behavior early in training produce reliable acquisition of supination. Thus, the knob supination task provides efficient and quantitative evaluation of a critical movement for dexterity in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.