This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Optical coherence tomography (OCT) is a light-based intracoronary imaging modality that provides high-resolution cross-sectional images of the luminal and plaque morphology. Currently, the segmentation of OCT images and identification of the composition of plaque are mainly performed manually by expert observers. However, this process is laborious and time consuming and its accuracy relies on the expertise of the observer. To address these limitations, we present a methodology that is able to process the OCT data in a fully automated fashion. The proposed methodology is able to detect the lumen borders in the OCT frames, identify the plaque region, and detect four tissue types: calcium (CA), lipid tissue (LT), fibrous tissue (FT), and mixed tissue (MT). The efficiency of the developed methodology was evaluated using annotations from 27 OCT pullbacks acquired from 22 patients. High Pearson's correlation coefficients were obtained between the output of the developed methodology and the manual annotations (from 0.96 to 0.99), while no significant bias with good limits of agreement was shown in the Bland-Altman analysis. The overlapping areas ratio between experts' annotations and methodology in detecting CA, LT, FT, and MT was 0.81, 0.71, 0.87, and 0.81, respectively.
Background Research investigating treatments and interventions for cognitive decline fail due to difficulties in accurately recognizing behavioral signatures in the presymptomatic stages of the disease. For this validation study, we took our previously constructed digital biomarker‐based prognostic models and focused on generalizability and robustness of the models. Method We validated prognostic models characterizing subjects using digital biomarkers in a longitudinal, multi‐site, 40‐month prospective study collecting data in memory clinics, general practitioner offices, and home environments. Results Our models were able to accurately discriminate between healthy subjects and individuals at risk to progress to dementia within 3 years. The model was also able to differentiate between people with or without amyloid neuropathology and classify fast and slow cognitive decliners with a very good diagnostic performance. Conclusion Digital biomarker prognostic models can be a useful tool to assist large‐scale population screening for the early detection of cognitive impairment and patient monitoring over time.
Objectives: To study the clinical, serological and histologic features of primary Sjögren's syndrome (pSS) patients with early (young ≤35 years) or late (old ≥65 years) onset and to explore the differential effect on lymphoma development.Methods: From a multicentre study population of 1997 consecutive pSS patients, those with early or late disease onset, were matched and compared with pSS control patients of middle age onset. Data driven analysis was applied to identify the independent variables associated with lymphoma in both age groups.Results: Young pSS patients (19%, n = 379) had higher frequency of salivary gland enlargement (SGE, lymphadenopathy, Raynaud's phenomenon, autoantibodies, C4 hypocomplementemia, hypergammaglobulinemia, leukopenia, and lymphoma (10.3% vs. 5.7%, p = 0.030, OR = 1.91, 95% CI: 1.11-3.27), while old pSS patients (15%, n = 293) had more frequently dry mouth, interstitial lung disease, and lymphoma (6.8% vs. 2.1%, p = 0.011, OR = 3.40, 95% CI: 1.34-8.17) compared to their middle-aged pSS c o n t r o l s , r e s p e c t i v e l y . I n y o u n g p S S p a t i e n t s, c r y o g l o b u l i n e m i a , C 4 hypocomplementemia, lymphadenopathy, and SGE were identified as independent lymphoma associated factors, as opposed to old pSS patients in whom SGE, C4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.