Background:The respiratory system is the main system affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a great number of infected people need hospitalization. Soluble urokinase plasminogen activator receptor (suPAR) is a biomarker indicative of acute and chronic inflammation. Current literature supports that suPAR has great predictive ability for mortality in patients with coronavirus disease 2019 . The aim of this study was to compare the value of suPAR and other laboratory biomarkers in patients with chest infection and suspected COVID-19.Methods: A total of 41 consecutive patients with chest infection were enrolled in the study and were assigned into two groups according to the real-time polymerase chain reaction (PCR) result for SARS-CoV-2. The two groups had no significant difference in baseline data (age, sex), arterial oxygen partial pressure (PO 2 )/fraction of inspired oxygen (FiO 2 ) ratio and mortality.Results: Among patients with chest infection who required hospitalization, suPAR was significantly higher on admission in those with COVID-19 when compared to patients with non-COVID-19. suPAR had a great prognostic ability for in-hospital mortality in the COV-ID-19 subgroup. Conclusions:A single measurement of suPAR on admission can provide prognostic information for patients with suspected COVID-19 pneumonia. In the subgroup of patients with positive real-time PCR result for SARS-CoV2, suPAR was significantly higher and had an excellent prognostic value for the in-hospital mortality.
Background: Along with important factors that worsen the clinical outcome of COVID-19, it has been described that bacterial infections among patients positive for a SARS-CoV-2 infection can play a dramatic role in the disease process. Co-infections or community-acquired infections are recognized within the first 48 h after the admission of patients. Superinfections occur at least 48 h after admission and are considered to contribute to a worse prognosis. Microbiologic parameters differentiate infections that happen after the fifth day of hospitalization from those appearing earlier. Specifically, after the fifth day, the detection of resistant bacteria increases and difficult microorganisms emerge. Objectives: The aim of the study was to evaluate the impact of bacterial infections in patients with COVID-19 on the length of the hospital stay and mortality. Methods: A total of 177 patients hospitalized due to COVID-19 pneumonia were consecutively sampled during the third and fourth wave of the pandemic at a University Hospital in Greece. A confirmed bacterial infection was defined as positive blood, urinary, bronchoalveolar lavage (BAL) or any other infected body fluid. Patients with confirmed infections were further divided into subgroups according to the time from admission to the positive culture result. Results: When comparing the groups of patients, those with a confirmed infection had increased odds of death (odds ratio: 3.634; CI 95%: 1.795–7.358; p < 0.001) and a longer length of hospital stay (median 13 vs. 7 days). A late onset of infection was the most common finding in our cohort and was an independent risk factor for in-hospital death. Mortality and the length of hospital stay significantly differed between the subgroups. Conclusion: In this case series, microbial infections were an independent risk factor for a worse outcome among patients with COVID-19. Further, a correlation between the onset of infection and a negative outcome in terms of non-infected, community-acquired, early hospital-acquired and late hospital-acquired infections was identified. Late hospital-acquired infections increased the mortality of COVID-19 patients whilst superinfections were responsible for an extended length of hospital stay.
Background: N-Acetylcysteine (NAC) is a mucolytic agents with anti-inflammatory properties that has been suggested as an adjunctive therapy in patients with COVID-19 pneumonia. Objectives: We conducted a systematic review and meta-analysis to evaluate available evidence on the possible beneficial effects of NAC on SARS-COV-2 infection. Methods: In September 2022, we conducted a comprehensive search on Pubmed/Medline and Embase on randomized controlled trials (RCTs) and observational studies on NAC in patients with COVID-19 pneumonia. Study selection, data extraction and risk of bias assessment was performed by two independent authors. RCTs and observational studies were analyzed separately. Results: We included 3 RCTs and 5 non-randomized studies on the efficacy of NAC in patients with COVID-19, enrolling 315 and 20826 patients respectively. Regarding in-hospital mortality, the summary effect of all RCTs was OR: 0.85 (95% CI: 0.43 to 1.67, I2=0%) and for non-randomized studies OR: 1.02 (95% CI: 0.47 to 2.23, I2=91%). Need for ICU admission was only reported by 1 RCT (OR: 0.86, 95% CI:0.44-1.69, p=0.66), while all included RCTs reported need for invasive ventilation (OR:0.91, 95% CI:0.54 to 1.53, I2=0). Risk of bias was low for all included RCTs, but certainty of evidence was very low for all outcomes due to serious imprecision and indirectness. Conclusion: The certainty of evidence in the included studies was very low, thus recommendations for clinical practice cannot be yet made. For all hard clinical outcomes point estimates in RCTs are close to the line of no effect, while observational studies have a high degree of heterogeneity with some of them suggesting favorable results in patients receiving NAC. More research is warranted to insure that NAC is both effective and safe in patients with COVID-19 pneumonia.
Introduction: Oxygen therapy remains the cornerstone for managing patients with severe SARS-CoV-2 infection and several modalities of non-invasive ventilation are used worldwide. High-flow oxygen via nasal canula is one therapeutic option which may in certain cases prevent the need of mechanical ventilation. The aim of this review is to summarize the current evidence on the use of high-flow nasal oxygen in patients with severe SARS-CoV-2 infection.Material and Methods: We conducted a systematic literature search of the databases PubMed and Cochrane Library until April 2021 using the following search terms: “high flow oxygen and COVID-19” and “high flow nasal and COVID-19’’.Results: Twenty-three articles were included in this review, in four of which prone positioning was used as an adjunctive measure. Most of the articles were cohort studies or case series. High-flow nasal oxygen therapy was associated with a reduced need for invasive ventilation compared to conventional oxygen therapy and led to an improvement in secondary clinical outcomes such as length of stay. The efficacy of high-flow nasal oxygen therapy was comparable to that of other non-invasive ventilation options, but its tolerability is likely higher. Failure of this modality was associated with increased mortality.Conclusion: High flow nasal oxygen is an established option for respiratory support in COVID-19 patients. Further investigation is required to quantify its efficacy and utility in preventing the requirement of invasive ventilation.
This report describes the case of an 84‐year‐old male who was brought to the emergency room because a dental bur was swallowed accidentally during a dental procedure. The foreign body was successfully removed by gastroenterologists endoscopically 8 days after the ingestion and was identified as a 2‐cm‐long dental bur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.