Education is a dynamic system by which students perceive the factors necessary to fit them into the society. Education is mainly intentional learning that grooms individuals to achieve success in their adult lives. Evaluation of teaching techniques, course management (CM), communication, and student monitoring are the main characteristics of today’s education system. The aim to plan the curriculum of education management in both schools and colleges leads to the implementation of an MS-BDA. The development process for evaluation of teaching techniques and CM includes the use of the sentiment analysis method, which assesses the emotional feelings of students studying the course by managing curriculum quality. The big data analysis with MNN is developed by considering the communication and student monitoring system. This system evaluates the monitoring model provided in MS-BDA for assessing student communication on merging the voice-over with the communication language processing system. The simulation analysis is performed based on accessibility, adaptability, and efficiency, proving the proposed framework’s reliability. Therefore, the system outputs an accuracy of 99.1% when compared to the existing methods.
This article contends that feature selection is an important pre-processing step in case the data set is huge in size with many features. Once there are many features, then the probability of existence of noisy features is high which might bring down the efficiency of classifiers created out of that. Since the clinical data sets naturally having very large number of features, the necessity of reducing the features is imminent to get good classifier accuracy. Nowadays, there has been an increase in the use of evolutionary algorithms in optimization in feature selection methods due to the high success rate. A hybrid algorithm which uses a modified binary particle swarm optimization called mutated binary particle swarm optimization and binary genetic algorithm is proposed in this article which enhanced the exploration and exploitation capability and it has been a verified with proposed parameter called trade off factor through which the proposed method is compared with other methods and the result shows the improved efficiency of the proposed method over other methods.
This article contends that feature selection is an important pre-processing step in case the data set is huge in size with many features. Once there are many features, then the probability of existence of noisy features is high which might bring down the efficiency of classifiers created out of that. Since the clinical data sets naturally having very large number of features, the necessity of reducing the features is imminent to get good classifier accuracy. Nowadays, there has been an increase in the use of evolutionary algorithms in optimization in feature selection methods due to the high success rate. A hybrid algorithm which uses a modified binary particle swarm optimization called mutated binary particle swarm optimization and binary genetic algorithm is proposed in this article which enhanced the exploration and exploitation capability and it has been a verified with proposed parameter called trade off factor through which the proposed method is compared with other methods and the result shows the improved efficiency of the proposed method over other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.