Background and Purpose:Today, treatment of life-threatening fungal infections, caused by Candida species, has become a major problem. In the present study, we aimed to evaluate the antifungal susceptibility patterns of different clinical Candida isolates, determine the virulence factors in multi-drug resistant (MDR) Candida species, and assess the anti-biofilm activity of Elettaria cardamomum against MDR Candida species.Materials and Methods:A total of 202 isolates from different Candida species were obtained from three governmental hospitals in Senthamangalam, Tiruchengode, and Namakkal, Tamil Nadu, India. The isolates were identified, using conventional methods. Candida species were tested for virulence factors such as biofilm, protease, and phospholipase activity. The minimum inhibitory concentration (MIC) of Elettaria cardamomum against MDR biofilm-forming C. albicans was determined, using plate and tube methods.Results:The identified Candida isolates (n=202) were C. albicans (74/202), C. glabrata (53/202), C. parapsilosis (44/202), C. tropicalis (15/202), and C. dubliniensis (16/202). The isolates were subjected to antifungal susceptibility testing and the virulence factors were determined. In terms of biofilm production, non-C. albicans species such as C. dubliniensis showed 75% activity. Also, regarding protease activity, C. parapsilosis (75%) showed the highest percentage of protease production. In addition, Candida species showed strong positivity for phospholipase activity (62.87%). In the MIC method, the acetonic extract completely inhibited biofilm production at a concentration of 125 µl (56.25 µg). In comparison with the ethanolic extract, the acetonic extract showed major activity against biofilm production.Conclusion:Based on the findings, pathogenic C. albicans species were inhibited by the ethanolic and acetonic extracts of E. cardamomum. In recent years, MDR and biofilm-forming pathogenic Candida species have been increasingly detected in clinical settings. Therefore, herbal derivatives might contribute to the treatment of infections without causing any side-effects and prevent the associated mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.