The interfaces formed at glassy carbon electrodes in three low-temperature ionic liquids (1-methyl-3ethylimidazolium chloride, emimCl; 1-methyl-3-butylimidazolium chloride, bmimCl; and 1-methyl-3hexylimidazolium chloride, hmimCl) were investigated by cyclic voltammetry and impedance spectroscopy. The potential dependence of the differential double layer capacitance was measured at several temperatures between 80 and 140 °C, and the temperature response was found to be broadly similar to that obtained with high-temperature molten salts. The differential capacitance/potential curves have a minimum and two side branches. The minimum corresponds to the point of zero charge. The differential capacitance increases in the order hmimCl < bmimCl < emimCl because the double layer is thinner when imidazolium (Rmim) cations with shorter alkyl chain lengths are used. The impedance spectra and capacitance curves indicate that cations are adsorbed at the open-circuit potential and that their surface excess concentration increases with negative polarization. Adsorption of the cation becomes stronger as the length of the alkyl chain decreases. Adsorption of chloride anions occurs at positive potentials and is weakest with bmimCl. The increase in the differential capacitance with temperature is most probably due to ion association within the double layer, which diminishes as temperature increases. The electrochemical window narrows as the temperature increases but is almost unaffected by the length of the alkyl chain of the Rmim cation.
The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the differential capacitance/potential curves. For different systems these curves have various overall shapes, but all include several extremes and a common minimum near the open circuit potential. We attribute this minimum to the potential of zero charge (PZC). Significantly, the differential capacitance generally decreases if the applied potential is large and moving away from the PZC. This is attributed to lattice saturation [A. A. Kornyshev, J. Phys. Chem. B, 2007, 111, 5545] effects which result in a thicker double layer. The differential capacitance of the double layer grows and specific adsorption diminishes with increasing temperature. Specific adsorption of both cations and anions influences the shapes of curves close to the PZC. The general shape of differential capacitance/potential does not depend strongly on the identity of the electrode material.
The structure of the liquid-vacuum interface in room temperature ionic liquids (ILs) is investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS) and synchrotron X-ray photoelectron spectroscopy (SXPS). By varying the polar angle and comparing the results for the chosen ionic liquids, we identify the presence of a surface layer that is chemically different to the bulk. In particular, this layer: (i) is enriched by aliphatic carbon atoms from the saturated carbon chains of the anions and cations, and (ii) contains an unequal distribution of cations and anions in a direction normal to the surface. This unequal distribution creates a potential gradient which extends from the surface into the liquid. We show unequivocally that this layer is not due to the presence of impurities.
The structure of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) room-temperature ionic liquid at an electrified gold interface was studied using neutron reflectometry, cyclic voltammetry, and differential capacitance measurements. Subtle differences were observed between the reflectivity data collected on a gold electrode at three different applied potentials. Detailed analysis of the fitted reflectivity data reveals an excess of [C(4)mpyr](+) at the interface, with the amount decreasing at increasingly positive potentials. A cation rich interface was found even at a positively charged electrode, which indicates a nonelectrostatic (specific) adsorption of [C(4)mpyr](+) onto the gold electrode.
We study structures of room-temperature ionic liquids at electrified interfaces and the corresponding electrical double-layer capacities using a self-consistent mean-field theory. Ionic liquids are modeled as segmented dendrimers and the effective dielectric constant is calculated from the local distribution of ions to accommodate the excluded volume and the local dielectric screening effects. The resulting camel-shaped capacitance curve is further analyzed in terms of the thickness of alternating layers and the polarization of ions at electrified interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.