Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.
As the domains in which robots operate change the objects a robot may be required to grasp and manipulate are likely to vary significantly and often. Furthermore there is increasing likelihood that in the future robots will work collaboratively alongside people. There has therefore been interest in the development of biologically inspired robot designs which take inspiration from nature. This paper presents the design and testing of a variable stiffness, three fingered soft gripper which uses pneumatic muscles to actuate the fingers and granular jamming to vary their stiffness. This gripper is able to adjust its stiffness depending upon how fragile/deformable the object being grasped is. It is also lightweight and low inertia making it better suited to operation near people. Each finger is formed from a cylindrical rubber bladder filled with a granular material. It is shown how decreasing the pressure inside the finger increases the jamming effect and raises finger stiffness. The paper shows experimentally how the finger stiffness can be increased from 21 to 71 N/m. The paper also describes the kinematics of the fingers and demonstrates how they can be position-controlled at a range of different stiffness values.
This article presents the design of a novel extensor-contractor pneumatic artificial muscle (ECPAM). This new actuator has numerous advantages over traditional pneumatic artificial muscles. These include the abilities to both contract and extend relative to a nominal initial length, to generate both contraction and extension forces, and to vary stiffness at any actuator length. A kinematic analysis of the ECPAM is presented in this article. A new output force mathematical model has been developed for the ECPAM based on its kinematic analysis and the theory of energy conservation. The correlation between experimental results and the new mathematical model has been investigated and show good correlation. Numerous stiffness experiments have been conducted to validate the variable stiffness ability of the actuator at a series of specific fixed lengths. This has proven that actuator stiffness can be adjusted independently of actuator length. Finally, a stiffness-position controller has been developed to validate the effectiveness of the novel actuator.
This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingers' grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed-loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer.
Background Walking aids such as walking frames offer support during walking, yet paradoxically, people who self-report using them remain more likely to fall than people who do not. Lifting of walking frames when crossing door thresholds or when turning has shown to reduce stability, and certain design features drive the need to lift (e.g. small, non-swivelling wheels at the front). To overcome shortfalls in design and provide better stability, biomechanists and industrial engineers engaged in a Knowledge Transfer Partnership to develop a novel walking frame that reduces the need for lifting during everyday tasks. This paper presents the results for the final prototype regarding stability, safety and other aspects of usability.Methods Four studies were conducted that explored the prototype in relation to the current standard frame: a detailed gait lab study of 9 healthy older adults performing repeated trials for a range of everyday tasks provided mechanical measures of stability, a real-world study that involved 9 users of walking frames provided measures of body weight transfer and lifting events, two interview studies (5 healthcare professionals and 7 users of walking frames) elicited stakeholder perceptions regarding stability, safety and usability. ResultsAnalysis of healthy older adults using a standard walking frame and the prototype frame demonstrated that the prototype increases stability during performance of complex everyday tasks (p < 0.05). Similarly, gait assessments of walking frame users in their home environment showed that the prototype facilitated safer usage patterns and provided greater and more continuous body weight support. Interviews with healthcare professionals and users showed that the prototype was perceived to be safe and effective and hence more usable.Conclusions The outcomes of the separate studies all support the same conclusion: the prototype is an improvement on the status quo, the typical front-wheeled Zimmer frame for indoor use which has not changed in design for decades. The significance of this work lies in the success of the Knowledge Transfer Partnership
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.