Ghrelin is a hunger hormone with gastroprokinetic properties but the factors controlling ghrelin secretion from the stomach are unknown. Bitter taste receptors (T2R) and the gustatory G proteins, α-gustducin (gust) and α-transducin, are expressed in the gut and are involved in the chemosensation of nutrients. This study aimed to investigate whether T2R-agonists affect (i) ghrelin release via α-gustducin and (ii) food intake and gastric emptying via the release of ghrelin. The mouse stomach contains two ghrelin cell populations: cells containing octanoyl and desoctanoyl ghrelin, which were colocalized with α-gustducin and α-transducin, and cells staining for desoctanoyl ghrelin. Gavage of T2R-agonists increased plasma octanoyl ghrelin levels in WT mice but the effect was partially blunted in gust −/− mice. Intragastric administration of T2R-agonists increased food intake during the first 30 min in WT but not in gust −/− and ghrelin receptor knockout mice. This increase was accompanied by an increase in the mRNA expression of agouti-related peptide in the hypothalamus of WT but not of gust −/− mice. The temporary increase in food intake was followed by a prolonged decrease (next 4 h), which correlated with an inhibition of gastric emptying. The delay in emptying, which was partially counteracted by ghrelin, was not mediated by cholecystokinin and GLP-1 but involved a direct inhibitory effect of T2R-agonists on gastric contractility. This study is unique in providing functional evidence that activation of bitter taste receptors stimulates ghrelin secretion. Modulation of endogenous ghrelin levels by tastants may provide novel therapeutic applications for the treatment of weight -and gastrointestinal motility disorders. nutrient sensing | gastrointestinal peptides | appetite
Bitter taste receptors (TAS2Rs) are present in extra-oral tissues, including gut endocrine cells. This study explored the presence and mechanism of action of TAS2R agonists on gut smooth muscle in vitro and investigated functional effects of intra-gastric administration of TAS2R agonists on gastric motility and satiation. TAS2Rs and taste signalling elements were expressed in smooth muscle tissue along the mouse gut and in human gastric smooth muscle cells (hGSMC). Bitter tastants induced concentration and region-dependent contractility changes in mouse intestinal muscle strips. Contractions induced by denatonium benzoate (DB) in gastric fundus were mediated via increases in intracellular Ca2+ release and extracellular Ca2+-influx, partially masked by a hyperpolarizing K+-efflux. Intra-gastric administration of DB in mice induced a TAS2R-dependent delay in gastric emptying. In hGSMC, bitter compounds evoked Ca2+-rises and increased ERK-phosphorylation. Healthy volunteers showed an impaired fundic relaxation in response to nutrient infusion and a decreased nutrient volume tolerance and increased satiation during an oral nutrient challenge test after intra-gastric DB administration. These findings suggest a potential role for intestinal TAS2Rs as therapeutic targets to alter gastrointestinal motility and hence to interfere with hunger signalling.
Aim: The microbiota shows diurnal oscillations that are synchronized by the host's circadian clock and feeding rhythms. Short-chain fatty acids (SCFAs) produced by the microbiota are possible synchronizers of peripheral circadian clocks.We aimed to investigate whether faecal SCFAs show a diurnal rhythm that regulates the rhythm of SCFA receptor expression (FFAR2/3, OLFR78, HCAR2) and SCFA-induced colonic contractility. The role of the circadian clock was studied in mice lacking the core clock gene Bmal1. Methods: Mice were sacrificed at 4-hour intervals. Faecal SCFA concentrations and SCFA receptor expression were determined. The effect of increasing concentrations of a SCFA mix on electrical field-induced neural responses in colon strips was measured isometrically. Results: Diurnal fluctuations in faecal SCFA concentrations (peak 4 hours after lights on) were observed that were in phase with the rhythm of Ffar2/3 expression in the colonic muscle layer. Olfr78 expression was not diurnal and Hcar2 was not detectable. The inhibitory effect of a SCFA mix on neural contractions in colonic smooth muscle strips showed a diurnal rhythm and oscillated in phase with faecal SCFA concentrations and Ffar2/3 expression. In contrast, neither excitatory neural responses nor acetylcholine-induced smooth muscle contractions showed a diurnal rhythm. In Bmal1 −/− mice, no fluctuations in faecal SCFA levels, Ffar3 expression and neural responses to SCFAs were observed. Conclusion: Diurnal microbial SCFA levels regulate the rhythm of Ffar3 expression in the colonic myenteric plexus, which causes rhythmicity in SCFA-induced colonic motility. Deletion of Bmal1 abolishes rhythmicity of SCFA levels and their downstream effects. K E Y W O R D Scircadian clock, colon contractility, short-chain fatty acids | INTRODUCTIONThe circadian clock coordinates the timing of physiological processes with solar time. The circadian system consists of a master clock, located in the suprachiasmatic nuclei of the anterior hypothalamus, and several peripheral clocks in different organs that are synchronized by the master clock. 1
Tachyphylaxis may have contributed to the failure of the motilide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.