The rehabilitation program conducted by Richards Bay Minerals (RBM) of areas exposed to opencast surface mining of sand dunes north of Richards Bay (28°43'S, 32°12'E) on the coast of northern KwaZulu‐Natal Province commenced 16 years before this study and has resulted in the development of a series of known‐aged stands of vegetation. By assuming that these spatially separated stands develop along a similar pathway over time, instantaneous sampling should reveal successional or other changes usually associated with aging and should provide an opportunity to evaluate the success of rehabilitation. We compare relative densities of pioneer and secondary species, species richness, and a similarity index of the herbaceous layer, tree, beetle, millipede, bird, and small‐mammal communities of rehabilitating areas of known age with those of 30‐year‐old unmined forests and unmined forests of unknown age adjacent to the rehabilitating area. Species richness for all but the mammalian taxa increased with increasing age of rehabilitating stands. For all taxa but the mammals and herbaceous layer, the unmined stands harbored more species than the mined rehabilitating stands. The relative densities of pioneer species of all the taxa decreased with an increase in the age of rehabilitating stands, whereas those of the secondary species increased with an increase in habitat age. Similarity between unmined stands and rehabilitating stands of different ages increased with increasing regeneration age of rehabilitating stands, suggesting that rehabilitating communities, in terms of species composition and relative densities, are developing towards the status of unmined communities. Rehabilitation based on RBM's management program of limited interference is occurring and may result in the reestablishment of a coastal dune forest ecosystem. But rehabilitation resulting from succession depends on the availability of species sources from which colonization can take place. In the Richards Bay mining operation the present mining path is laid out so that such refuges are present.
Do communities return to their former state when we disturb them? The answer is ''surely not always,'' since some disturbances may be so devastating that recovery will be impossible. If communities do recover, then how fast is that recovery? Do different subsets of species return at the same rate? Is that rate a simple exponential recoverymeaning that the change toward the original state is fastest when the community is furthest away and it slows as the community converges? Or is recovery a more dynamically complex process? These questions are theoretically interesting and practically important. The theoretical questions are if there is a particular state-some exact composition-to which a community is likely to return, if there might be several (or many) possible such states, or if community composition is essentially haphazard. The practical implication is that if disturbed ecological communities do not tend to return to a previous state, it may be impossible to undo human impacts on natural ecosystems.We follow the fate of species assemblages following the removal of vegetation for mining. We show that these assemblages in restored subtropical coastal dune forests in South Africa do converge with a regional equilibrium state and that convergence is possible within a reasonable period. However, changes in assemblages from different trophic levels were idiosyncratic: convergence in the dung beetle assemblage did not mimic convergence for trees and birds, for example. Few of the assemblages converged exponentially, the simplest shape for the decay function. Furthermore, trends were sometimes different for different indices of community dissimilarity, suggesting that whether one accepts convergence depends, in part, on exactly what one measures.
An intensive observation period was conducted in September 2017 in the central Namib, Namibia, as part of the project Namib Fog Life Cycle Analysis (NaFoLiCA). The purpose of the field campaign was to investigate the spatial and temporal patterns of the coastal fog that occurs regularly during nighttime and morning hours. The fog is often linked to advection of a marine stratus that intercepts with the terrain up to 100 km inland. Meteorological data, including cloud base height, fog deposition, liquid water path, and vertical profiles of wind speed/direction and temperature, were measured continuously during the campaign. Additionally, profiles of temperature and relative humidity were sampled during five selected nights with stratus/fog at both coastal and inland sites using tethered balloon soundings, drone profiling, and radiosondes. This paper presents an overview of the scientific goals of the field campaign; describes the experimental setup, the measurements carried out, and the meteorological conditions during the intensive observation period; and presents first results with a focus on a single fog event.
The future of fog-dependent habitats under climate change is unknown but likely precarious; many have experienced recent declines in fog. Fog-dependent deserts particularly will be threatened, because, there, fog can be the main water source for biota. We review the interactions between fog and fauna of the Namib Desert, about which there is 50 yr of research. We resynthesize the data, seeking patterns and mechanisms that could provide a framework for predicting outcomes of changes in fog regime in other fog-dependent deserts. In the Namib, fog constitutes the most-predictable form of free water. At least 48 Namib animal species consume free water from fog, or are likely to do so, employing both liquid and vapor phase. Fog also sustains plants that form the base for metabolic water production and wets the diet to provide pre-formed water. So fog provides or underpins all the water intake of Namib fauna. Only a few species are active fog-harvesters, though. Among Namib beetles, two species are unique in that they fog-bask; they assume stereotyped postures in wind-driven fog and droplets deposit on their carapaces. Some Namib beetle species construct surface ridges that trap fog water, which they consume. Some arthropods emerge from their subsurface habitats, or occupy its wet top layers, to access fog water, at times and in conditions outside their usual surface activity. Many more taxa, including vertebrates, use fog water opportunistically. They do not actively seek it out but use it when available. Acquiring fog water from droplets requires overcoming spherical surface tension so is possible only for animals heavier than~100 mg. Smaller animals extract water from films or acquire it in the vapor phase. Some Namib animals use hygroscopic surfaces to extract vapor from unsaturated air, at ambient humidities attained in fog or sometimes between fogs. Rapid acquisition of water during episodic fog events creates problems for storage and osmoregulation, which some Namib animals have solved in enterprising ways, including long-term internal storage of water and sequestering of osmolytes.Although not yet comprehensive, the body of research reviewed, and the principles that we have elucidated underlying fog usage, should inform future research on fauna throughout fog-dependent deserts.
Abstract. Knowledge of the thermal ecology of a species can improve model predictions for temperatureinduced population collapse, which in light of climate change is increasingly important for species with limited distributions. Here, we use a multi-faceted approach to quantify and integrate the thermal ecology, properties of the thermal habitat, and past and present distribution of the diurnal, xeric-adapted, and active-foraging Namibian lizard Pedioplanis husabensis (Sauria: Lacertidae) to model its local extinction risk under future climate change scenarios. We asked whether climatic conditions in various regions of its range are already so extreme that local extirpations of P. husabensis have already occurred, or whether this micro-endemic species is adapted to these extreme conditions and uses behavior to mitigate the environmental challenges. To address this, we collected thermoregulation and climate data at a micro-scale level and combined it with micro-and macroclimate data across the species' range to model extinction risk. We found that P. husabensis inhabits a thermally harsh environment, but also has high thermal preference. In cooler parts of its range, individuals are capable of leaving thermally favorable conditions-based on the species' thermal preference-unused during the day, probably to maintain low metabolic rates. Furthermore, during the summer, we observed that individuals regulate at body temperatures below the species' high thermal preference to avoid body temperatures approaching the critical thermal maximum. We find that populations of this species are currently persisting even at the hottest localities within the species' geographic distribution. We found no evidence of range shifts since the 1960s despite a documented increase in air temperatures. Nevertheless, P. husabensis only has a small safety margin between the upper limit of its thermal preference and the critical thermal maximum and might undergo range reductions in the near future under even the most moderate climate change scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.