Transhumeral amputation has a significant effect on a person’s independence and quality of life. Myoelectric prostheses have the potential to restore upper limb function, however their use is currently limited due to lack of intuitive and natural control of multiple degrees of freedom. The goal of this study was to evaluate a novel transhumeral prosthesis controller that uses a combination of kinematic and electromyographic (EMG) signals recorded from the person’s proximal humerus. Specifically, we trained a time-delayed artificial neural network to predict elbow flexion/extension and forearm pronation/supination from six proximal EMG signals, and humeral angular velocity and linear acceleration. We evaluated this scheme with ten able-bodied subjects offline, as well as in a target-reaching task presented in an immersive virtual reality environment. The offline training had a target of 4° for flexion/extension and 8° for pronation/supination, which it easily exceeded (2.7° and 5.5° respectively). During online testing, all subjects completed the target-reaching task with path efficiency of 78% and minimal overshoot (1.5%). Thus, combining kinematic and muscle activity signals from the proximal humerus can provide adequate prosthesis control, and testing in a virtual reality environment can provide meaningful data on controller performance.
The work presented in this thesis is part of a project in instruction based learning (IBL) for mobile robots were a robot is designed that can be instructed by its users through unconstrained natural language. The robot uses vision guidance to follow route instructions in a miniature town model.The aim of the work presented here was to detenn.ine the functional vocabulary of the robot in d1e form of "primitive procedures". In contrast to previous work in the field of instructable robots this was done following a "user-centred" approach were the main concern was to create primitive procedures that can be directly associated with natural language instructions. To achieve this, a corpus of human-to-human natural language instructions was collected and analysed. A set of primitive actions was found with which the collected corpus could be represented. These primitive actions were then implemented as robot-executable procedures.Natural language instructions are under-specified when destined to be executed by a robot. This is because instructors omit information tl1at they consider as "commonsense" and rely on the listener's sensory-motor capabilities to determine the details of the task execution. In this thesis the underspecification problem is solved by determining the missing information, either during the learning of new routes or during their execution by the robot. During learning, the missing information is determined by imitating the commonsense approach human listeners take to achieve the same purpose. During execution, missing information, such as the location of road layout features mentioned in route instructions, is determined from the robot's view by using image template matching. The original contribution of this thesis, in both these methods, lies in the fact that they are driven by the natural language examples found in the corpus collected for the IDL project. 3During the testing phase a high success rate of primitive calls, when these were considered individually, showed that the under-specification problem has overall been solved. A novel method for testing the primitive procedures, as part of complete route descriptions, is also proposed in this thesis. This was done by comparing the performance of human subjects when driving the robot, following route descriptions, with the performance of the robot when executing the same route descriptions. The results obtained from this comparison clearly indicated where errors occur from the time when a human speaker gives a route description to the time when the task is executed by a human listener or by the robot.Finally, a software speed controller is proposed in this thesis in order to control the wheel speeds of the robot used in this project. The controller employs PI (Proportional and Integral) and PID (Proportional, Integral and Differential) control and provides a good alternative to expensive hardware.
Teaching programming to novices is a difficult task due to the complex nature of the subject, the negative stereotypes are associated with programming and because introductory programming courses often fail to encourage student understanding. This study investigates the effectiveness of using robots as tools in the teaching of introductory programming and to determine whether such technology can help to overcome the current barriers for learners in this context. The systematic literature review (SLR) methodology is used to address this aim. Nine electronic databases, the proceedings from six conferences and two journals were searched for relevant literature and exclusion criteria, and after performing several validation exercises, in total, 75% of included papers report that robots are an effective teaching tool and can help novice programmers in their studies. Most of these papers focus on the use of physical robots, however, and further research is needed to assess the effectiveness of using simulated robots. 2 Method 2.1 Research questions This report is based upon the SLR guidelines as proposed by Kitchenham and Charters [7]. A protocol was developed as part of the SLR [10]. The aim of the SLR was to determine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.