The design of mechanisms that encourage pro-social behaviours in populations of self-regarding agents is recognised as a major theoretical challenge within several areas of social, life and engineering sciences. When interference from external parties is considered, several heuristics have been identified as capable of engineering a desired collective behaviour at a minimal cost. However, these studies neglect the diverse nature of contexts and social structures that characterise real-world populations. Here we analyse the impact of diversity by means of scale-free interaction networks with high and low levels of clustering, and test various interference mechanisms using simulations of agents facing a cooperative dilemma. Our results show that interference on scale-free networks is not trivial and that distinct levels of clustering react differently to each interference mechanism. As such, we argue that no tailored response fits all scale-free networks and present which mechanisms are more efficient at fostering cooperation in both types of networks. Finally, we discuss the pitfalls of considering reckless interference mechanisms.
Regulation of advanced technologies such as Artificial Intelligence (AI) has become increasingly important, given the associated risks and apparent ethical issues. With the great benefits promised from being able to first supply such technologies, safety precautions and societal consequences might be ignored or shortchanged in exchange for speeding up the development, therefore engendering a racing narrative among the developers. Starting from a game-theoretical model describing an idealised technology race in a fully connected world of players, here we investigate how different interaction structures among race participants can alter collective choices and requirements for regulatory actions. Our findings indicate that, when participants portray a strong diversity in terms of connections and peer-influence (e.g., when scale-free networks shape interactions among parties), the conflicts that exist in homogeneous settings are significantly reduced, thereby lessening the need for regulatory actions. Furthermore, our results suggest that technology governance and regulation may profit from the world’s patent heterogeneity and inequality among firms and nations, so as to enable the design and implementation of meticulous interventions on a minority of participants, which is capable of influencing an entire population towards an ethical and sustainable use of advanced technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.