PennyLane is a Python 3 software framework for optimization and machine learning of quantum and hybrid quantumclassical computations. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware.We provide plugins for Strawberry Fields, Rigetti Forest, Qiskit, and ProjectQ, allowing PennyLane optimizations to be run on publicly accessible quantum devices provided by Rigetti and IBM Q. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, and autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.
Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by means of optical characterization. Second-order autocorrelation is a cornerstone measurement that is particularly time-consuming to realize on a large scale. Supervised machine learning-based classification of quantum emitters as "single" or "not-single" is implemented based on their sparse autocorrelation data. The method yields a classification accuracy of 95% within an integration time of less than a second, realizing roughly a 100-fold speedup compared to the conventional Levenberg-Marquardt fitting approach. It is anticipated that machine learning-based classification will provide a unique route to enable rapid and scalable assembly of quantum nanophotonic devices.
Bosonic qubits are a promising route to building fault-tolerant quantum computers on a variety of physical platforms. Studying the performance of bosonic qubits under realistic gates and measurements is challenging with existing analytical and numerical tools. We present a novel formalism for simulating classes of states that can be represented as linear combinations of Gaussian functions in phase space. This formalism allows us to analyze and simulate a wide class of non-Gaussian states, transformations and measurements. We demonstrate how useful classes of bosonic qubits-Gottesman-Kitaev-Preskill (GKP), cat, and Fock states-can be simulated using this formalism, opening the door to investigating the behaviour of bosonic qubits under Gaussian channels and measurements, non-Gaussian transformations such as those achieved via gate teleportation, and important non-Gaussian measurements such as threshold and photon-number detection. Our formalism enables simulating these situations with levels of accuracy that are not feasible with existing methods. Finally, we use a method informed by our formalism to simulate circuits critical to the study of fault-tolerant quantum computing with bosonic qubits but beyond the reach of existing techniques. Specifically, we examine how finite-energy GKP states transform under realistic qubit phase gates; interface with a CV cluster state; and transform under non-Clifford T gate teleportation using magic states. We implement our simulation method as a part of the open-source Strawberry Fields Python library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.