During an out-of-body experience (OBE), the experient seems to be awake and to see his body and the world from a location outside the physical body. A closely related experience is autoscopy (AS), which is characterized by the experience of seeing one's body in extrapersonal space. Yet, despite great public interest and many case studies, systematic neurological studies of OBE and AS are extremely rare and, to date, no testable neuroscientific theory exists. The present study describes phenomenological, neuropsychological and neuroimaging correlates of OBE and AS in six neurological patients. We provide neurological evidence that both experiences share important central mechanisms. We show that OBE and AS are frequently associated with pathological sensations of position, movement and perceived completeness of one's own body. These include vestibular sensations (such as floating, flying, elevation and rotation), visual body-part illusions (such as the illusory shortening, transformation or movement of an extremity) and the experience of seeing one's body only partially during an OBE or AS. We also find that the patient's body position prior to the experience influences OBE and AS. Finally, in five patients, brain damage or brain dysfunction is localized to the temporo-parietal junction (TPJ). These results suggest that the complex experiences of OBE and AS represent paroxysmal disorders of body perception and cognition (or body schema). The processes of body perception and cognition, and the unconscious creation of central representation(s) of one's own body based on proprioceptive, tactile, visual and vestibular information-as well as their integration with sensory information of extrapersonal space-is a prerequisite for rapid and effective action with our surroundings. Based on our findings, we speculate that ambiguous input from these different sensory systems is an important mechanism of OBE and AS, and thus the intriguing experience of seeing one's body in a position that does not coincide with its felt position. We suggest that OBE and AS are related to a failure to integrate proprioceptive, tactile and visual information with respect to one's own body (disintegration in personal space) and by a vestibular dysfunction leading to an additional disintegration between personal (vestibular) space and extrapersonal (visual) space. We argue that both disintegrations (personal; personal-extrapersonal) are necessary for the occurrence of OBE and AS, and that they are due to a paroxysmal cerebral dysfunction of the TPJ in a state of partially and briefly impaired consciousness.
The spatial unity of self and body is challenged by various philosophical considerations and several phenomena, perhaps most notoriously the "out-of-body experience" (OBE) during which one's visual perspective and one's self are experienced to have departed from their habitual position within one's body. Although researchers started examining isolated aspects of the self, the neurocognitive processes of OBEs have not been investigated experimentally to further our understanding of the self. With the use of evoked potential mapping, we show the selective activation of the temporoparietal junction (TPJ) at 330 -400 ms after stimulus onset when healthy volunteers imagined themselves in the position and visual perspective that generally are reported by people experiencing spontaneous OBEs. Interference with the TPJ by transcranial magnetic stimulation (TMS) at this time impaired mental transformation of one's own body in healthy volunteers relative to TMS over a control site. No such TMS effect was observed for imagined spatial transformations of external objects, suggesting the selective implication of the TPJ in mental imagery of one's own body. Finally, in an epileptic patient with OBEs originating from the TPJ, we show partial activation of the seizure focus during mental transformations of her body and visual perspective mimicking her OBE perceptions. These results suggest that the TPJ is a crucial structure for the conscious experience of the normal self, mediating spatial unity of self and body, and also suggest that impaired processing at the TPJ may lead to pathological selves such as OBEs.
Background and Purpose-Although atrial fibrillation is the most frequent cause of cardioembolic stroke, this arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent and, thus, may not be detected on standard 12-lead ECG or even 24-hour ECG recording (Holter). In this study, we hypothesized that 7-day ambulatory ECG monitoring using an event-loop recording (ELR) device would detect otherwise occult episodes atrial fibrillation and flutter (AF) after acute stroke or transient ischemic attack (TIA). Methods-One hundred forty-nine consecutive patients admitted to our neurology department with an acute stroke or TIA were systematically screened for emboligenic arrhythmias using standard ECG. In the absence of AF on standard ECG, patients underwent 24-hour ECG recording (Holter), which was followed by a 7-day ambulatory ECG monitoring (ELR) in patients with a normal Holter. Patients with previously documented persistent AF, with primary hemorrhagic stroke, or with acute large vessel dissection were not included in the study. Results-AF was detected in 22 patients. Standard ECG identified AF in 2.7% of the cases at admission (4/149 patients) and in 4.1% of remaining patients within 5 days (6/145). Holter disclosed AF in 5% of patients with a normal standard ECG (7/139 patients), whereas ELR detected AF in 5.7% of patients with a normal standard ECG and normal Holter (5/88 patients). Conclusions-Following acute stroke or TIA, ELR identified patients with AF, which remained undetected with standard ECG and with Holter. ELR should, therefore, be considered in every patient in whom a cardioembolic mechanism is suspected.
Momentary fluctuations of baseline activity have been shown to influence responses to sensory stimulation both behaviorally and neurophysiologically. This suggests that perceptual awareness does not solely arise from physical stimulus properties. Here we studied whether the momentary state of the brain immediately before stimulus presentation indicates how a physically unique but perceptually ambiguous stimulus will be perceived. A complex Necker cube was intermittently presented and subjects indicated whether their perception changed with respect to the preceding presentation. EEG was recorded from 256 channels. The prestimulus brain-state was defined as the spatial configuration of the scalp potential map within the 50 ms before stimulus arrival, representing the sum of all momentary ongoing brain processes. Two maps were found that doubly dissociated perceptual reversals from perceptual stability. For EEG sweeps classified as either map, distributed inverse solutions were computed and statistically compared. This yielded activity confined to a region in right inferior parietal cortex that was significantly more active before a perceptual reversal. In contrast, no significant topographic differences of the evoked potentials elicited by stable vs. reversed Necker cubes were found. This indicates that prestimulus activity in right inferior parietal cortex is associated with the perceptual change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.