We study an alternative to dimensional regularisation of planar scattering amplitudes in N = 4 super Yang-Mills theory by going to the Coulomb phase of the theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism, allowing us to work in four dimensions. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. The latter acts on the kinematical variables of the amplitudes as well as on the Higgs masses in an effectively five dimensional space. We confirm this expectation by an explicit calculation in the gauge theory. A consequence of this exact dual conformal symmetry is a significantly reduced set of scalar basis integrals that are allowed to appear in an amplitude. For example, triangle sub-graphs are ruled out. We argue that the study of exponentiation of amplitudes is simpler in the Higgsed theory because evanescent terms in the mass regulator can be consistently dropped. We illustrate this by showing the exponentiation of a four-point amplitude to two loops. Finally, we also analytically compute the small mass expansion of a two-loop master integral with an internal mass.E The infinitesimal form of the dual conformal generators 30 F AdS 5 isometries and dual conformal symmetry generators 311 See also the recent papers [25,26].
We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to four massless quarkanti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric super Yang-Mills theory (N = 4 SYM) onto the relevant components yielding all gluongluino tree amplitudes in N = 4 SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different flavors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all N = 4 SYM gluongluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark pairs.
We consider the lowest order quantum gravitational corrections to Yukawa and phi{4} interactions. Our results show that quantum gravity leads to contributions to the running coupling constants if the particles are massive and therefore alters the scaling behavior of the standard model. Furthermore, we find that the gravitational contributions to the running of the masses vanish.
A self-consistent exposition of the theory of tree-level superamplitudes of the 4d N = 4 and 6d N = (1, 1) maximally supersymmetric Yang-Mills theories is provided. In 4d we work in non-chiral superspace and construct the superconformal and dual superconformal symmetry generators of the N = 4 SYM theory using the non-chiral BCFW recursion to prove the latter. In 6d we provide a complete derivation of the standard and hidden symmetries of the tree-level superamplitudes of N = (1, 1) SYM theory, again using the BCFW recursion to prove the dual conformal symmetry. Furthermore, we demonstrate that compact analytical formulae for tree-superamplitudes in N = (1, 1) SYM can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation. We derive compact manifestly dual conformal representations of the five-and six-point superamplitudes as well as arbitrary multiplicity formulae valid for certain classes of superamplitudes related to ultra-helicity-violating massive amplitudes in 4d. We study massive tree superamplitudes on the Coulomb branch of the N = 4 SYM theory from dimensional reduction of the massless superamplitudes of the six-dimensional N = (1, 1) SYM theory. We exploit this correspondence to construct the super-Poincaré and enhanced dual conformal symmetries of massive tree superamplitudes in N = 4 SYM theory which are shown to close into a finite dimensional algebra of Yangian type. Finally, we address the fascinating possibility of uplifting massless 4d superamplitudes to 6d massless superamplitudes proposed by Huang. We confirm the uplift for multiplicities up to eight but show that finding the uplift is highly non-trivial and in fact not of a practical use for multiplicities larger than five.
We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\mathcal{N}=4$ super Yang-Mills theory.Comment: 45 pages, 11 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.