Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin–Ciocalteu method, while the antioxidant capacity was tested through the EOs’ ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs’ ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin–Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 μg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.
In terms of sustainability and circular economy, agricultural by-products may be efficiently reused in insects’ rearing for high-quality protein sources in human diet and animal feeds. The present study aimed to explore whether the utilization of carob pods as feeding substrate may beneficially affect Tenebrio molitor’s growth, nutritional value, antioxidant status and cellular responses. Increasing levels of milled whole carob pods (0, 25, 50, 75, 100%) were used as alternative wheat bran (control) substrates for yellow mealworm rearing, while growth performance, proximate composition, total phenolic content, antioxidant enzyme activity and the expression of stress- and apoptotic-related proteins were evaluated in larvae. The results showed that carob pods’ content up to 75% did not significantly differentiate larvae weight, development time and total dry matter. Larvae total phenolic content and antioxidant activity exhibited a significant increase at 75% content. Although the antioxidant enzymes’ activity decreased at both 25 and 50% levels, higher carob content levels (75 and 100%) resulted in no significant changes compared to the control. Carob pods led to decreased apoptotic indicators and the low expression of most stress-related proteins compared to the control. The present findings demonstrate that carob pods and their antioxidant properties exert beneficial effects on T. molitor’s rearing and nutritional status, although 100% carob content may impact adversely the larvae due to the high amounts of carob tannins.
The snowy Mespilus, or serviceberry (Amelanchier ovalis Medik., Rosaceae) represents a neglected and underutilized small fruit tree species with high nutritional value. In this work, we present the results of a long-term study facilitating the sustainable exploitation of A. ovalis as a new germplasm resource from the Greek flora. Ten wild-growing population samples of A. ovalis have been collected from natural habitats in northern Greece. Asexual propagation trials on these materials delivered successful propagation (83.3% rooting) on a selected genotype via leafy cuttings of young, primary, non-lignified soft wood with the application of the rooting hormone. The ex situ cultivation potential of the selected genotype has been evaluated under distinct fertilization regimes in a pilot field trial. Three-year results of this ongoing trial have shown that A. ovalis does not require external nutrient enhancement to be established during its early stages since plant growth rates between conventional fertilization and control plants were similar for the first two years and higher compared to organic fertilization. Conventional fertilization delivered higher fresh fruit production in the third year, with higher fruit number and fruit size compared to organic fertilization and control plants. The phytochemical potential of the cultivated genotype was assessed via the total phenolic content and radical scavenging activity of separate extracts from leaves, twigs, flowers, and young fruits, which revealed that individual plant organs have strong antioxidant activity despite their moderate total phenolic content. The multifaceted approach applied herein has provided novel data that may set the framework for further applied research toward the sustainable agronomic exploitation of Greek A. ovalis as a diversified superfood crop.
Chronic exposure to high ambient temperatures is detrimental to laying hen performance and egg quality. Plant secondary metabolites may alleviate effects, partly due to their antioxidant activities. Herein, we investigated the effects of dietary supplementation with a phytonutrient solution (PHYTO) consisting of a plant extract combination of Scutellaria baicalensis and Curcuma longa on young layers (25–32 wk of age) raised under naturally elevated temperature conditions. Four hundred, 24-wk-old Lohmann hens were allocated in 50 cages and, after a week of adaptation, were offered a diet either containing 2 g/kg of PHYTO or not, for 8 wk. Hen BW was measured at the beginning and end of the trial, and egg production and feed intake were recorded weekly. At week 32, four eggs per cage were collected to determine egg quality characteristics as well as the rate of lipid and albumen oxidation in fresh eggs. At the end of the trial, two hens per cage were blood sampled for assessment of biochemical markers, one of which was euthanized for histopathological evaluation of the liver and intestine and assessment of intestinal histomorphometry. The herbal mixture supplementation significantly increased egg production rate at weeks 28 and 29 and for the overall production period, and feed efficiency at weeks 26–29. In addition, the degree of liver necrosis and microvascular thrombosis was lower (P < 0.05) whereas intestinal villosity was greater in duodenal and jejunal segments (P < 0.05) in the PHYTO compared to the control group. Supplementation also reduced (P < 0.05) blood concentrations of corticosterone, alanine aminotransferase activity, and TBARS, and a reduction in catalase activity was observed. Egg quality characteristics were not affected, except for eggshell thickness, egg diameter, and eggshell breaking strength that were superior in the PHYTO group (P < 0.05). PHYTO supplementation significantly improved egg lipid oxidation status of fresh eggs. In conclusion, supplementation with PHYTO improved laying hen productivity and egg quality, which was associated with an improvement in laying hen thermotolerance.
European elder or elderberry (Sambucus nigra L., Viburnaceae) is a plant species with known high pharmaceutical and nutritional value. However, the Greek native germplasm of S. nigra has not been adequately utilized to date as in other regions. This study evaluates the fruit antioxidant potential (total phenolic content and radical scavenging activity) of wild-growing and cultivated germplasm of Greek S. nigra. In addition, nine cultivated Greek S. nigra genotypes were evaluated regarding the effects of fertilization (conventional and organic) on fruit phytochemical and physicochemical potential (total flavonoids, ascorbic acid content, pH, total soluble solids, and total acidity), as well as on the antioxidant potential (total phenolic content and radical scavenging activity) of fruits and leaves. Additionally, an analysis of macro- and micro-elements in the leaves of the cultivated germplasm was performed. The results demonstrated comparatively higher total phenolic contents of fruits of cultivated germplasm. The genotype was the decisive factor in the fruits’ phytochemical potential and leaves’ total phenolic content of cultivated S. nigra germplasm. Similarly, fertilization regime effects were found to be genotype-dependent, affecting fruit phytochemical and physicochemical attributes. The trace element analysis results were similar, with genotypes varying significantly in their concentrations of macro- and micro-elements. The current work builds on previous domestication attempts for Greek S. nigra, providing new data on the phytochemical potential of this important nutraceutical species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.