The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.
BackgroundSubterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity.ResultsTreating animals with 3-Methylcholantrene (3MCA) and 7,12-Dimethylbenz(a) anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA), two potent carcinogens, confirmed Spalax high resistance to chemically induced cancers. While all mice and rats developed the expected tumors following treatment with both carcinogens, among Spalax no tumors were observed after DMBA/TPA treatment, while 3MCA induced benign fibroblastic proliferation in 2 Spalax individuals out of12, and only a single animal from the advanced age group developed malignancy 18 months post-treatment. The remaining animals are still healthy 30 months post-treatment. In vitro experiments showed an extraordinary ability of normal Spalax cultured fibroblasts to restrict malignant behavior in a broad spectrum of human-derived and in newly isolated Spalax 3MCA-induced cancer cell lines. Growth of cancer cells was inhibited by either direct interaction with Spalax fibroblasts or with soluble factors released into culture media and soft agar. This was accompanied by decreased cancer cell viability, reduced colony formation in soft agar, disturbed cell cycle progression, chromatin condensation and mitochondrial fragmentation. Cells from another cancer resistant subterranean mammal, the naked mole rat, were also tested for direct effect on cancer cells and, similar to Spalax, demonstrated anti-cancer activity. No effect on cancer cells was observed using fibroblasts from mouse, rat or Acomys. Spalax fibroblast conditioned media had no effect on proliferation of noncancerous cells.ConclusionsThis report provides pioneering evidence that Spalax is not only resistant to spontaneous cancer but also to experimentally induced cancer, and shows the unique ability of Spalax normal fibroblasts to inhibit growth and kill cancer cells, but not normal cells, either through direct fibroblast-cancer cell interaction or via soluble factors. Obviously, along with adaptation to hypoxia, Spalax has evolved efficient anti-cancer mechanisms yet to be elucidated. Exploring the molecular mechanisms allowing Spalax to survive in extreme environments and to escape cancer as well as to kill homologous and heterologous cancer cells may hold the key for understanding the molecular nature of host resistance to cancer and identify new anti-cancer strategies for treating humans.
Acetaminophen in large doses is well-known as hepatotoxic, and early therapy with N-acetylcysteine is frequently life-saving. However, in later stages of acetaminophen poisoning, treatment with N-acetylcysteine is not always effective. Although some of the pathways of acetaminophen toxicity and the effect of N-acetylcysteine have been elucidated, in depth information on this process is still lacking. Hepatoma-derived HepG2 cultured cells were exposed to acetaminophen (5 and 10 mM), with or without N-acetylcysteine (5 mM), for 24 and 48 hr. For the assessment of oxidative damage, apoptosis and necrosis, we followed redox status, glutathione content, nuclear fragmentation, phosphatidylserine externalization and ultrastructural changes. Variations in Ca2 π level and number of mitochondrial dense granules were also studied. Acetaminophen treatment of HepG2 cells caused oxidative damage and apoptosis. Significant decrease of cellular redox potential and glutathione content were time-and concentration-dependent. The protective effect of N-acetylcysteine was expressed by an increase of intracellular glutathione and of the level of metabolic reduction of the redox indicator Alamar Blue. The apoptogenic effect of acetaminophen was assessed by flow cytometry of annexin V binding, nuclear hypodiploidity, intracellular Ca2 π , as well as by ultrastructural examination. Beyond 24 hr of acetaminophen exposure, necrosis was also noticed. We conclude that acetaminophen-induced oxidative damage in HepG2 cultured cells can be prevented by exposure to N-acetylcysteine. However, apoptosis, either early or late, here demonstrated, is not avoided by exposure to N-acetylcysteine. N-Acetylcysteine did not prevent acetaminophen-induced plasma membrane asymmetry, nuclear damage, alterations of Ca2 π homeostasis and ultrastructural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.