We evaluated knee function, tensile properties, and histologic appearance of a healing intraarticular bone-patellar tendon-bone autograft after anterior cruciate ligament reconstruction in a goat model. The patellar tendon graft was fixed such that both bone-to-bone (femoral tunnel) and bone-to-tendon (tibial tunnel) healing could be studied. The total anteroposterior translation significantly increased from 3 to 6 weeks, ranging from increases of 28.8% to 46.7%. In situ forces in the replacement graft decreased as much as 22.2% at 6 weeks. Conversely, tensile properties of the femur-anterior cruciate ligament graft-tibia complex did not change significantly from 3 to 6 weeks. However, the mode of failure changed from the graft pulling out of the tibial tunnel at 3 weeks to a mix of midsubstance failures (N = 2) and pullouts (N = 5) at 6 weeks. Histologic evaluations revealed progressive and complete incorporation of the bone block in the femoral tunnel, but only partial incorporation of the tendinous part of the graft in the tibial tunnel. The differences demonstrated at 3 and 6 weeks may be a result of the remodeling process of the midsubstance of the graft as the interfaces within the osseous tunnels mature.
The viscoelastic properties of the healing medial collateral ligament (MCL) at 12 weeks after isolated injury were investigated in a goat model. The stress-strain relationships, static and cyclic stress-relaxation behaviors of the healing MCL up to 5% strain were determined experimentally using a femur-MCL-tibia complex. These experimental data were used in combination with the quasi-linear viscoelastic (QLV) theory of Fung (1972) to characterize the reduced relaxation function, G(t) (described by constants C, tau1, and tau2) and the elastic response, sigmae(epsilon) (described by constants A and B) of this tissue. It was found that the percentage of stress relaxation for the healing MCLs was significantly greater than those for sham-operated controls (49.0 +/- 12.1% vs. 26.5 +/- 8.1%, respectively; p < 0.05). The product of constants A x B, i.e. the initial slope of the stress-strain curves, was found to be significantly lower for healing MCLs compared to those for sham-operated controls (32.9 +/- 15.8 MPa vs. 118.8 +/- 48.3 MPa; p < 0.05). The dimensionless constant C, i.e. the magnitude of the viscous response, was nearly three times greater for healing MCLs, while constant tau1 was found to be similar between the two groups (0.80 +/- 0.43 s vs. 0.89 +/- 0.52 s, respectively). Constant tau2 for the healing MCL was significantly less than the controls (1269 +/- 38 s vs. 1845 +/- 431 s; p < 0.05) indicating that the stress relaxation reached a plateau earlier. These constants of the QLV theory used to describe the healing MCL were validated for the strain level utilized in this experiment (approximately equal to 4.5%) by predicting the peak stresses during a cyclic stress-relaxation experiment. The theoretically determined values closely matched the experimentally measured values. Thus, this study demonstrates that the QLV theory could be successfully used to describe the viscoelastic behavior of the MCL during the early phases of healing.
In this study knee joint function with a healing medial collateral ligament (MCL) at six weeks was examined with a robotic/universal force-moment sensor testing system during the application of two loading conditions: (1) 5 Nm valgus moment and (2) 67 N anterior load. Additionally the structural properties of the femur-MCL-tibia complex and the mechanical properties of the MCL substance were determined by uniaxial tensile tests. The histological appearance of the healing MCL was also observed. At 30 degrees and 60 degrees of knee flexion, valgus rotation of the healing knee was significantly increased compared to the sham. The in situ force in the healing MCL was significantly lower (34+/-17 N vs 54+/-12 N) at the same flexion angles (50+/-10 N vs 62+/-7 N). The anterior translation of the knee had returned to normal values at 30 degrees and 60 degrees of knee flexion. However, no differences could be found between the corresponding in situ forces in the healing MCL at all flexion angles examined during application of an anterior load. The stiffness of the healing group (52.5+/-19.4 N/mm) was significantly lower than the sham group (80.3+/-26.4 N/mm) (p<0.04). The modulus of the healing group was also significantly decreased (p<0.05). The findings suggest that the tensile properties of the healing goat MCL and valgus knee rotation have not returned to normal at six weeks after an isolated MCL rupture, however, anterior translation appeared to return to sham levels.
This study evaluated the healing process of an isolated medial collateral ligament (MCL) rupture at 12 weeks in a goat model. Using a robotic/UFS testing system, knee kinematics in multiple degrees of freedom and in situ forces in the healing MCL in response to (1) a 67-N anterior tibial load and (2) a 5-Nm valgus moment were evaluated as a function of angles of knee flexion. Then a uniaxial tensile test of femur-MCL-tibia complexes (FMTCs) was preformed to obtain the structural properties of the FMTC and mechanical properties of the healing MCL substance. The histological appearance of the healing MCL was also examined for collagen and cell organization. The anterior tibial translation in response to a 67-N anterior tibial load was found to range from 1.9 to 2.4 mm, which was not significantly different from the sham-operated, contralateral control knee. In response to a 5-Nm valgus moment, however, MCL injury caused a 40% or more increase in valgus rotations over sham-operated controls for all angles of knee flexion tested. The magnitudes of the in situ forces in the healing MCLs for neither external loading conditions differed from sham-operated controls. For the structural properties of the healing FMTC, the stiffness returned to sham-operated control levels, but ultimate load at failure remained 60% of sham-operated control values. In terms of mechanical properties of the healing MCL, its tangent modulus and stress at failure were only 40% of sham-operated control values. Histologically, the collagen and cell organization at the femoral and tibial insertions as well as the midsubstance remained disorganized. Comparing these data to those previously reported at 6 weeks, there was a marked improvement in the in situ forces in the healing MCL and of the stiffness of the FMTC. Also, the data obtained for the goat model revealed a faster healing process than those for the rabbit model. These findings suggest that greater post-injury activity levels may render the goat to be a better animal model for studying the healing process of the MCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.