Tidal floods (i.e., “nuisance” flooding) are occurring more often during seasonal high tides or minor wind events, and the frequency is expected to increase dramatically in the coming decades. During these flood events, coastal communities’ roads are often impassable or difficult to pass, thus impacting routine transport needs. This study identifies vulnerable roads and quantifies the risk from nuisance flooding in the Eastern United States by combining public road information from the Federal Highway Administration’s Highway Performance Monitoring System with flood frequency maps, tidal gauge historic observations, and future projections of annual minor tidal flood frequencies and durations. The results indicate that tidal nuisance flooding across the East Coast threatens 7508 miles (12,083 km) of roadways including over 400 miles (644 km) of interstate roadways. From 1996–2005 to 2006–2015, there was a 90% average increase in nuisance floods. With sea level rise, nuisance-flood frequency is projected to grow at all locations assessed. The total induced vehicle-hours of delay due to nuisance flooding currently exceed 100 million hours annually. Nearly 160 million vehicle-hours of delay across the East Coast by 2020 (85% increase from 2010); 1.2 billion vehicle-hours by 2060 (126% increase from 2010); and 3.4 billion vehicle-hours by 2100 (392% increase from 2010) are projected under an intermediate low sea-level-rise scenario. By 2056–2065, nuisance flooding could occur almost daily at sites in Connecticut, New Jersey, Maryland, the District of Columbia, North Carolina, and Florida under an intermediate sea-level-rise scenario.
Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions.
The 2013–2016 Ebola epidemic revived concerns about infection risks to wastewater workers. Prior research has shown that wastewater can contain a variety of known and emerging pathogens and that wastewater workers are at increased risk of infectious illnesses. However, guidelines on using personal protective equipment (PPE) to decrease these risks are lacking. We engaged 34 wastewater utility personnel and public health experts to conduct a job safety analysis identifying tasks in which workers could be exposed to pathogens and to develop a PPE selection matrix for preventing those exposures. We identified 43 relevant job tasks. Recommended PPE ranges from durable gloves (all tasks) to safety glasses (24 tasks), Tyvek suits or coveralls (4 tasks), and respiratory protection (N95 mask or face mask, depending on the activity, 10 tasks). The PPE selection matrix can serve as a guide for protecting the 120,000 wastewater workers in the United States from known and emerging pathogens. Practitioner points Wastewater workers are at increased risk of infectious illnesses. Policies to protect wastewater workers from these illnesses are lacking. We developed guidelines for use of personal protective equipment by wastewater workers to prevent exposure to infectious agents.
Health impact assessment (HIA) has been promoted as a means to encourage transportation and city planners to incorporate health considerations into their decision-making. Ideally, HIAs would include quantitative estimates of the population health effects of alternative planning scenarios, such as scenarios with and without infrastructure to support walking and cycling. However, the lack of baseline estimates of time spent walking or biking for transportation (together known as “active transportation”), which are critically related to health, often prevents planners from developing such quantitative estimates. To address this gap, we use data from the 2009 US National Household Travel Survey to develop a statistical model that estimates baseline time spent walking and biking as a function of the type of transportation used to commute to work along with demographic and built environment variables. We validate the model using survey data from the Raleigh–Durham–Chapel Hill, NC, USA, metropolitan area. We illustrate how the validated model could be used to support transportation-related HIAs by estimating the potential health benefits of built environment modifications that support walking and cycling. Our statistical model estimates that on average, individuals who commute on foot spend an additional 19.8 (95% CI 16.9–23.2) minutes per day walking compared to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5–6.4) minutes per day compared to automobile commuters. Bicycle commuters cycle for an additional 28.0 (95% CI 17.5–38.1) minutes per day compared to automobile commuters. The statistical model was able to predict observed transportation physical activity in the Raleigh–Durham–Chapel Hill region to within 0.5 MET-hours per day (equivalent to about 9 min of daily walking time) for 83% of observations. Across the Raleigh–Durham–Chapel Hill region, an estimated 38 (95% CI 15–59) premature deaths potentially could be avoided if the entire population walked 37.4 min per week for transportation (the amount of transportation walking observed in previous US studies of walkable neighborhoods). The approach developed here is useful both for estimating baseline behaviors in transportation HIAs and for comparing the magnitude of risks associated with physical inactivity to other competing health risks in urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.