PYY levels increased similarly after either procedure. The markedly reduced ghrelin levels in addition to increased PYY levels after LSG, are associated with greater appetite suppression and excess weight loss compared with LRYGBP.
Insulin resistance and loss of glucose-stimulated acute insulin response (AIR) are the two major and earliest defects in the course of type 2 diabetes. We investigated whether weight loss after bariatric surgery in patients with morbid obesity and type 2 diabetes could restore euglycemia and normal AIR to an intravenous glucose tolerance test (IVGTT). We studied 25 morbidly obese patients-12 with type 2 diabetes, 5 with impaired glucose tolerance, and 8 with normal glucose tolerance (NGT)-before and after a biliopancreatic diversion (BPD) with Roux-en-Y gastric bypass (RYGBP). Twelve individuals with normal BMI served as control subjects. Twelve months after surgery, in the diabetes group, BMI decreased from 53.2 ؎ 2.0 to 29.2 ؎ 1.7 kg/m 2 , fasting glucose decreased from 9.5 ؎ 0.83 to 4.5 ؎ 0.13 mmol/l, and fasting insulin decreased from 168.4 ؎ 25.9 to 37.7 ؎ 4.4 pmol/l (mean ؎ SE; P < 0.001). AIR, the mean of insulin concentration at 2, 3, and 5 min over basal in the IVGTT, increased by 770 and 935% at 3 and 12 months after surgery, respectively (from 24.0 ؎ 22.7 to 209 ؎ 43.4 and 248 ؎ 33.1 pmol/l, respectively; P < 0,001). Conversely, in the NGT group, the AIR decreased by 40.5% (from 660 ؎ 60 to 393 ؎ 93 pmol/l; P ؍ 0.027) 12 months after surgery. BPD with RYGBP performed in morbidly obese patients with type 2 diabetes leads to significant weight loss, euglycemia, and normal insulin sensitivity; but most importantly, it restores a normal -cell AIR to glucose and a normal relationship of AIR to insulin sensitivity. This is the first study to demonstrate that the lost glucose-induced AIR in patients with type 2 diabetes of mild or moderate severity is a reversible abnormality.
Background/Aims: Adiponectin and its receptors, AdipoR1 and AdipoR2, constitute integral components of energy homeostatic mechanism in peripheral tissues. Recent studies have implicated adiponectin in central neural networks regulating food intake and energy expenditure. The present study aimed at investigating the possible expression and distribution of adiponectin and its receptors in human pituitary gland, hypothalamus and different brain areas. Methods: Sections of the pituitary gland, hypothalamus and adjacent basal forebrain area, cerebrum and cerebellum from 35 autopsy cases, were examined using HE, PAS-Orange G, luxol fast blue/cresyl violet stains and single and double immunohistochemistry using adiponectin, AdipoR1, AdipoR2, choline acetyltransferase, FSH, LH, TSH, GH, ACTH and prolactin-specific antibodies. Age and BMI mean values ± SD of the autopsy cases were 56 ± 18 years and 27 ± 5 kg/m2, respectively. Results: Strong adiponectin expression was observed in pituitary gland. In pars distalis (PD), adiponectin localized in GH, FSH, LH and TSH-producing cells and in pars tuberalis (PT) in FSH, LH and TSH-producing cells. Strong to moderate expression of AdipoR1 and AdipoR2 was observed in PD by the same cell types as adiponectin. No immunoreactivity for adiponectin receptors was noted in cells of PT. Intense AdipoR1 immunostaining was observed in neurons of lateral hypothalamic area and of nucleus basalis of Meynert (NBM). Conclusions: Adiponectin and its receptors expression in human pituitary might indicate the existence of a local system, modulating endocrine axes. Furthermore, the presence of AdipoR1 in hypothalamus and NBM suggests that adiponectin may participate in central neural signaling pathways controlling energy homeostasis and higher brain functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.