Experimental measurements of the frequency spectra and frequency cross-spectra of the wall pressure fluctuations beneath a turbulent boundary layer were made in a low-noise flow facility. The data, taken over a range of flow speeds, clearly display a dimensionless frequency (ωδ/uτ=50) at which the spectra achieve a maximum and a low-frequency range with an approximately ω2 rolloff. The scaling laws for the low-, mid-, and high-frequency regions of the spectrum are established. The cross-spectral data, obtained over a range of streamwise separations (0.21≤ξ/δ≤16.4), allow for the computations of the decay Γ(ξ,ω) and convection velocity Uc(ξ,ω) of the wall pressure field. These data show the existence of two distinct wave number groups: a high wave number group that scales on the similarity variable k1ξ=ωξ/Uc(ξ,ω) associated with turbulent sources in the log region of the boundary layer, in which eddies decay in proportion to their size, and a low wave number group that defines the cutoff for the large-scale turbulence contributors in the outer region of the boundary layer. The convection velocity data support the conjecture that the major turbulent contributions to the low and high wave number groups come from the outer and inner layers, respectively. These new results, when examined collectively, firmly establish the spectral features of the wall pressure fluctuations, including the low-frequency range, which is highly sensitive to (passive) structures in the outer flow. The locations for the turbulent sources of the wall pressure field are proposed.
Measurements were made of the wall pressure field beneath separated/reattached boundary layer flows. These flows consisted of two types; flow over a forward-facing step and flow over a backward-facing step. Wall pressure fluctuations from an equilibrium flat plate boundary layer flow were also measured and used as a baseline for comparative purposes. Values of the RMS fluctuating pressure as well as the frequency spectral density, phase velocity, and coherence of the surface pressure field were measured at various locations upstream and downstream of the steps. The experimental results show that the separation-reattachment process produces large-amplitude, low-frequency pressure fluctuations. The measured spectral statistics of the wall pressure fluctuations are consistent with the view that at reattachment there exists a region of coherent highly energized velocity fluctuations located near the wall which, as it convects downstream, decays and diffuses away from the wall. This energized region remains identifiable in the wall pressure statistics as far as 72 step heights downstream of the backward-facing step.
Measurements were made of the mean velocity profiles and wall pressure field upstream and downstream of the flow over both a backward-facing and forward-facing step. For each configuration the velocity profiles show that the effects of the separation-reattachment process persist more than 24 step heights downstream of the step. Extremely high values of the RMS wall pressure are measured near reattachment. These values are 5 and 10 times larger than on a smooth flat plate for the backward-facing step and the forward-facing step, respectively. The spectral density of the wall pressure fluctuations in the recirculation region is dominated by low frequency components. Downstream of reattachment there is a reduction in the low frequency content of the wall pressures and an increase in the high frequency components. At the farthest measured position downstream, the spectral density is still higher than that found on a smooth flat plate. These results show that the complex turbulent flow generated by a surface irregularity can significantly increase the localized wall pressure field and these increases persist far downstream of the irregularity. Consequently, a surface irregularity can be a major source of turbulence-induced vibrations and flow noise, as well as a cause of the inception of cavitation in marine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.