Aptamers are nucleic acid molecules that have been selected in vitro to bind to their molecular targets with high affinity and specificity. Typically, the systematic evolution of ligands by exponential enrichment (SELEX) process is used for the isolation of specific, high-affinity aptamers. SELEX, however, is an iterative process requiring multiple rounds of selection and amplification that demand significant time and labor. Here, we describe an aptamer discovery system that is rapid, highly efficient, automatable, and applicable to a wide range of targets, based on the integration of magnetic bead-based SELEX process with microfluidics technology. Our microfluidic SELEX (M-SELEX) method exploits a number of unique phenomena that occur at the microscale and implements a design that enables it to manipulate small numbers of beads precisely and isolate high-affinity aptamers rapidly. As a model to demonstrate the efficiency of the M-SELEX process, we describe here the isolation of DNA aptamers that tightly bind to the light chain of recombinant Botulinum neurotoxin type A (with low-nanomolar dissociation constant) after a single round of selection.microchannel ͉ recombinant Botulinum neurotoxin type A ͉ systematic evolution of ligands by exponential enrichment
Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Herein, we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. As both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either the polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 μM to 10 pM).
Metastatic estrogen receptor α (ERα)–positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.