The supramolecular water reduction photocatalysts [{(Ph2phen)2Ru(dpp)}2RhX2](PF6)5 (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp =2,3-bis(2-pyridyl)pyrazine X = Cl, Br) are efficient electrocatalysts for the reduction of CF3SO3H, CF3CO2H, and CH3CO2H to H2 in DMF or DMF/H2O mixtures. The onset of catalytic current occurs at -0.82 V versus Ag/AgCl for CF3SO3H, -0.90 V for CF3CO2H, and -1.1 V for CH3CO2H with overpotentials of 0.61, 0.45, and 0.10 V, respectively. In each case, catalysis is triggered by the first dpp ligand reduction implicating the dpp as an electron reservoir in catalysis. A new species with Epc ∼ -0.75 V was observed in the presence of stoichiometric amounts of strong acid, and its identity is proposed as the Rh(H)(III/II) redox couple. H2 was produced in 72-85% Faradaic yields and 95-116 turnovers after 2 h and 435 turnovers after 10 h of bulk electrolysis. The identities of Rh(I) species upon reduction have been studied. In contrast to the expected dissociation of halides in the Rh(I) state, the halide loss depends on solvent and water content. In dry CH3CN, in which Cl(-) is poorly solvated, a [Ru] complex dissociates and [(Ph2phen)2Ru(dpp)Rh(I)Cl2](+) and [(Ph2phen)2Ru(dpp)](2+) are formed. In contrast, for X = Br(-), the major product of reduction is the intact trimetallic Rh(I) complex [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+). Chloride loss in CH3CN is facilitated by addition of 3 M H2O. In DMF, the reduced species is [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+) regardless of X = Cl(-) or Br(-).
Addition of sulfonated terminal ligands into a Ru,Rh,Ru photocatalyst has a significant impact on the excited-state properties of the complex. The hydrophilic photocatalyst demonstrates increased solubility and H2 production in aqueous solutions. H2 production is observed under aerobic conditions for the new complex, a stark contrast to the hydrophobic analog in organic solvents.
The groundbreaking use of polyelectrolytes to increase the efficiency of supramolecular photocatalysts in solar H2 production schemes under aqueous aerobic conditions is reported. Supramolecular photocatalysts of the architecture [{(TL)2 Ru(BL)}2 RhX2 ](5+) (BL=bridging ligand, TL=terminal ligand, X=halide) demonstrate high efficiencies in deoxygenated organic solvents but do not function in air-saturated aqueous solution because of the quenching of the metal-to-ligand charge-transfer (MLCT) excited state under these conditions. The new photocatalytic system incorporates poly(4-styrenesulfonate) (PSS) into aqueous solutions containing [{(bpy)2 Ru(dpp)}2 RhCl2 ](5+) (bpy=2,2'-bipyridine, dpp=2,3-bis(2-pyridyl)pyrazine). PSS has a profound impact on the photocatalyst efficiency, increasing H2 production over three times that of deoxygenated aqueous solutions alone. H2 photocatalysis proceeds even under aerobic conditions for PSS-containing solutions, an exciting consequence for solar hydrogen-production research.
The femtosecond transient absorption spectra (fsTA) and excited state kinetics for a series of six structurally related mixed-metal polypyridyl supramolecules are reported. Each complex consists of one or two light absorbers (LA) with Ru(II) or Os(II) centers attached to a Rh(III)centered electron collector (EC) by an aromatic bridging ligand (BL). The resulting bimetallic and trimetallic complexes have LA-BL-EC and LA-BL-EC-BL-LA architectures, respectively. Excitation at 470 nm light populates metal-to-bridging ligand charge transfer states (MLCT), showing a transient absorption band near 380 nm due to →* transitions of a bridging ligandlocalized radical anion and a transient bleach around 525 nm resulting from formal oxidation of the LA metal in the excited state. Loss of the ligand localized radical signal during the first 10 ps reflects conversion of the excited state population from an MLCT state into metal-to-metal (i.e. M(d)-to-Rh(d*)) charge transfer states (MMCT). Each complex shares a similar ultrafast component, indicating that the kinetics governing MLCT→MMCT population transfer do not depend on the nature of the LA. Return to the ground state, however, is strongly LA dependent and controlled by the free-energy difference between the MMCT state and ground state, as well as an associated large reorganization energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.