A dense hydrogen‐bond network is responsible for the mechanical and structural properties of polysaccharides. Random derivatization alters the properties of the bulk material by disrupting the hydrogen bonds, but obstructs detailed structure–function correlations. We have prepared well‐defined unnatural oligosaccharides including methylated, deoxygenated, deoxyfluorinated, as well as carboxymethylated cellulose and chitin analogues with full control over the degree and pattern of substitution. Molecular dynamics simulations and crystallographic analysis show how distinct hydrogen‐bond modifications drastically affect the solubility, aggregation behavior, and crystallinity of carbohydrate materials. This systematic approach to establishing detailed structure–property correlations will guide the synthesis of novel, tailor‐made carbohydrate materials.
Biopolymers, like DNA and proteins, fold in specific conformations in order to exert complex biological functions. Synthetic modifications are commonly used to alter those conformations and create engineered biomaterials. In stark contrast, the chemical complexity and dynamic nature of polysaccharides have hampered a detailed structural characterization and structure−function correlations are still incomplete. Many synthetic strategies have been developed to access complex unnatural oligosaccharides, capable of mimicking or even improving the properties of the natural counterpart. However, the structural features behind these results are often neglected. This perspective highlights the approaches adopted to develop unnatural glycans, with a particular focus on how the insertion of specific modifications results in more flexible or more constrained structures. Synthetic analogues of natural oligosaccharides could shine light on fundamental structural features. The combination of modern synthetic, computational, and analytical methods will result in novel carbohydrate based foldamers, with defined shape and aggregation behavior. Multiple applications in biology, material science, and nanotechnology can be envisioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.