This paper examines the properties of likelihood maps generated by interval mapping (IM) and composite interval mapping (CIM), two widely used methods for detecting quantitative trait loci (QTLs). We evaluate the usefulness of interpretations of entire maps, rather than only evaluating summary statistics that consider isolated features of maps. A simulation study was performed in which traits with varying genetic architectures, including 20-40 QTLs per chromosome, were examined with both IM and CIM under different marker densities and sample sizes. IM was found to be an unreliable tool for precise estimation of the number and locations of individual QTLs, although it has greater power for simply detecting the presence of QTLs than CIM. The ability of CIM to resolve the correct number of QTLs and to estimate their locations correctly is good if there are three or fewer QTLs per 100 centiMorgans, but can lead to erroneous inferences for more complex architectures. When the underlying genetic architecture of a trait consists of several QTLs with randomly distributed effects and locations likelihood profiles were often indicative of a few underlying genes of large effect. Studies that have detected more than a few QTLs per chromosome should be interpreted with caution.
An efficient, cost-effective and open-source approach is described for high-throughput genotyping of large fixed panels of diploid individuals.
AbstractAssociation mapping aimed at identifying DNA polymorphisms that contribute to variation in complex traits entails genotyping a large number of single-nucleotide polymorphisms (SNPs) in a very large panel of individuals. Few technologies, however, provide inexpensive high-throughput genotyping. Here, we present an efficient approach developed specifically for genotyping large fixed panels of diploid individuals. The cost-effective, open-source nature of our methodology may make it particularly attractive to those working in nonmodel systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.