This study by Khrimian et al. demonstrates that the bone-derived hormone osteocalcin is necessary and sufficient to correct age-related cognitive decline in the mouse. It also provides genetic, molecular, and neurophysiological evidence that Gpr158 is the receptor mediating osteocalcin’s regulation of cognition.
In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan‐1 (Sdc‐1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc‐1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor‐initiating cell phenotype. Sdc‐1 small‐interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT‐29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex‐determining region Y)‐box 2, KLF2, and TCF4/TCF7L2. Sdc‐1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial‐to‐mesenchymal transition‐related gene expression. Sdc‐1‐depleted HT‐29 xenograft growth was increased compared to controls. Decreased Sdc‐1 expression was associated with an increased activation of β1‐integrins, focal adhesion kinase (FAK), and wingless‐type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc‐1‐depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc‐1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness‐associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence.DatabasesThe GEO accession number of the Affymetrix transcriptomic screening is GSE58751.
Mouse Embryonic Stem Cells (ESCs) are pluripotent mammalian cells derived from the Inner Cell Mass (ICM) of mouse blastocysts, which give rise to all three embryonic germ layers both in vivo and in vitro. Mouse ESCs have a distinct epigenetic landscape and a more decondensed chromatin compared to differentiated cells. Numerous studies have shown that distinct histone modifications in ESCs serve as hallmarks of pluripotency. However, so far it is still unknown whether the total histone content (as opposed to histone modifications) remains the same in cells of different developmental stage and differentiation capacity. In this work we show that total histone content differs between pluripotent and differentiated cells. In vitro spontaneous differentiation from ESCs to Embryoid Bodies (EBs) and directed differentiation toward neuronal and endodermal cells entails an increase in histone content. Primary MEFs also contain more histones than ESCs. We suggest that the difference in histone content is an additional hallmark of pluripotency, in addition to and besides histone modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.