Improved surgical safety can be achieved using intraoperative neurophysiological monitoring procedures. Repetitive stimulation of the motor cortex proved to be a reliable method for monitoring subcortical motor pathways. Changes in MEP latency and MEP amplitude served as warning criteria during surgery and possessed prognostic value.
nTMS allowed for reliable, precise application of the magnetic impulse, and the peritumoral somatotopy corresponded well between the 2 modalities in all 10 cases. nTMS is a promising method for preoperative functional mapping in motor cortex tumor surgery.
The intra-operative use of neurophysiological techniques allows reliable identification of the sensorimotor region, and constitutes a prerequisite for its anatomical and functional preservation. The present prospective study combines monopolar cortical stimulation (MCS) with the recording of phase reversal of somatosensory evoked potentials (SEP-PR) in a protocol for the intra-operative mapping of the motor cortex. Functional mapping of the motor cortex by SEP-PR and MCS was performed in 70 patients during surgery in and around the motor cortex. The central sulcus was identified by SEP-PR. Cortical motor mapping was then performed by monopolar anodal (400 Hz) stimulation. Motor responses were recorded by needle electrodes placed in the muscles of the contralateral extremities. Surgery was performed under general anaesthesia without muscle relaxants. Intra-operative localization of the central sulcus by SEP-PR was possible in 68 patients (97.14%). Motor evoked potentials (MEP) were elicited following MCS in 67 cases (95.7%). In 3 cases no MEP was recorded, not even after maximal stimulation intensity, the central sulcus being localized by SEP-PR only. On the other hand, MCS allowed localizing the motor cortex in the 2 cases with no recordable SEP-PR. Thus, combining SEP-PR and MCS allowed intra-operative localization of the sensorimotor cortex in 100% of the cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.