Background and ObjectivesSomatic mutations in the calreticulin gene (CALR) are detected in approximately 70% of patients with essential thrombocythemia (ET) and primary or secondary myelofibrosis (MF), lacking the JAK2 and MPL mutations. To determine the prevalence of CALR frameshift mutations in a population of MPN patients of Greek origin, we developed a rapid low-budget PCR-based assay and screened samples from 5 tertiary Haematology units. This is a first of its kind report of the Greek patient population that also disclosed novel CALR mutants.MethodsMPN patient samples were collected from different clinical units and screened for JAK2 and MPL mutations after informed consent was obtained. Negative samples were analyzed for the presence of CALR mutations. To this end, we developed a modified post Real Time PCR High-Resolution Melting Curve analysis (HRM-A) protocol. Samples were subsequently confirmed by Sanger sequencing.ResultsUsing this protocol we screened 173 MPN, JAK2 and MPL mutation negative, patients of Greek origin, of whom 117 (67.63%) displayed a CALR exon nine mutation. More specifically, mutations were detected in 90 out of 130 (69.23%) essential thrombocythaemia cases (ET), in 18 out of 33 (54.55%) primary myelofibrosis patients (pMF) and in 9 out of 10 (90%) cases of myelofibrosis secondary to ET (post-ET sMF). False positive results were not detected. The limit of detection (LoD) of our protocol was 2%. Furthermore, our study revealed six rare novel mutations which are to be added in the COSMIC database.ConclusionsOverall, our method could rapidly and cost-effectively detect the mutation status in a representative cohort of Greek patients; the mutation make-up in our group was not different from what has been published for other national groups.
Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.
Background:Background: Acute myeloid leukemia (AML) is a life-threatening malignant myeloid disorder with poor prognosis.Response to induction treatment determines long-term prognosis; however, mechanisms underlying response have not been thoroughly investigated. DNA damage and repair mechanisms influence not only the genetic predisposition to leukemia but are also very important for refractoriness to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.