In this study, we assessed exercise intensity in 20 water polo games of different duration. The hypothesis that right wing players perform at a higher intensity than back and forward central players was also tested. Thirty water polo players, equally split between three field positions, participated in the study. Initially, their performance-related physiological capabilities were evaluated. Subsequently, during water polo games of short (4 x 7-min periods) or long duration (4 x 9-min periods), heart rate was monitored continuously and blood lactate concentration was measured at the end of each period. Activity patterns were also recorded using a video camera. Mean heart rate over the entire game was 156 +/- 18 beats x min(-1). Overall exercise intensity fluctuated around a value corresponding to the lactate threshold (4.03 +/- 0.96 mmol x l(-1), 86 +/- 5% of peak heart rate) and decreased (P < 0.003) with game time (4.22 +/- 1.8 and 3.47 +/- 1.9 mmol x l(-1) in the second and fourth quarter, respectively). During the last 6 min, heart rate was higher (P < 0.001) in games of short duration (156 +/- 3 beats x min(-1)) than in games of long duration (152 +/- 8 beats x min(-1)). Video analysis showed that the percentage of time spent in low-intensity activities (i.e. "out of game") was lower (23 vs. 26%), whereas that in high-intensity activities (i.e. "sprinting crawl") was higher (21 vs. 19%), in games of short compared with long duration. No difference was observed among players of various field positions in any of the variables examined. Thus during match-play, games of long duration produced significantly lower heart rate responses than games of short duration, and the physiological response exhibited by the players was not affected by field position. The water polo authorities should consider these results before changing game duration and coaches should prepare their athletes accordingly.
The purpose of the study was to examine changes in performance and match-induced fatigue over a 27-week training period. Eight national-level water-polo players performed a 5 x 200 m swimming test to calculate velocities corresponding to blood lactate concentration of 4.0, 5.0 and 10.0 mmol.l-1 at three testing periods: i) baseline, ii) end of the pre-season (8 weeks of 4 x 4 min swimming bouts), iii) end of the in-season (8 weeks of 8 x 20 m swimming sprints). During each testing period, four competitive matches were played and repeated sprints (8 x 20 m), 400 m swimming, and shooting accuracy were evaluated at the pre- and post-match. Repeated sprint tests were also conducted at mid-game. Analysis of variance for repeated measures was used to detect changes among training periods and within games. Swimming velocities corresponding to 4.0, 5.0 and 10.0 mmol.l-1 were increased after the pre-season by 9%, 7.7%, and 6.7% (p < 0.01) and decreased following the in-season compared to the pre-season by 8.9%, 7.0% and 3.3% (p < 0.01), respectively. Pre-match repeated sprints and 400 m performance were improved after the pre-season by 4.3% and 3.8% (p < 0.01) and decreased by ~3% after the in-season compared to the pre-season (p < 0.01). Mid- and post-match repeated sprint performance was improved after the pre-season by 4.8 ± 1.4% and 4.4 ± 1.1% and remained unchanged after the in-season compared to the pre-season. Post-match 400 m speed was improved by 3.2% after the pre-season (p < 0.01) and decreased by 2.8% after the in-season (p = 0.04).Pre-season training improved players’ aerobic endurance and performance. Intensified in-season training decreased aerobic power, endurance, and pre-match performance while maintaining match repeated sprint performance.
Botonis, PG, Toubekis, AG, and Platanou, TI. Physiological and tactical on-court demands of water polo. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the present review is to provide a quantification of the specific game's activities performed by elite water polo players and a comprehensive overview of the physiological requirements reflecting physical and tactical on-court demands in water polo. Game analysis demonstrates that various swimming movements occur throughout a match play, although approximately 50% of these are recorded in horizontal body position. The various offensive and defensive tactical actions transiently modify the playing intensity, which overall corresponds to the players' lactate threshold. Even play corresponds to 60% of total game actions, whereas the respective percentage of power-play and counterattacks may exceed 30%. The ability to perform high-intensity activities with short recovery periods is critical for water polo players. Elite water polo players present a high level of aerobic power and endurance as indicated by their maximal oxygen uptake and speed at the lactate threshold. Depending on the positional roles, outfield players are characterized as centers or peripherals. The overall physiological load seems to be similar between players at various positions, despite that centers execute more dynamic body contacts, whereas peripherals more swimming bouts. Despite limitations concerning the experimental setting, the current findings indicate that the incidence of fatigue deteriorates playing intensity and performance. Nonetheless, data from the reviewed studies should be cautiously interpreted because in some of the studies, players' substitutions were not allowed. A high conditioning level is essential for water polo, as it is associated with superior technical and tactical efficacy and lower decline of physical or technical performance within the game.
This study compared the effects of different high-intensity interval training (HIIT) intervals performed concurrently with strength and specific water polo training on performance indices of elite players. During the precompetition season, 2 water polo clubs were assigned to either HIIT of 4 × 4 minutes (n = 7, HIIT4 × 4) or HIIT of 16 × 100-m swimming efforts (n = 7, HIIT16 × 100). Both clubs applied the swimming (6% above the speed corresponding to blood lactate concentration of 4.0 mmol · L) and strength training (85-90% of 1 repetition maximum, 5 repetitions, 4 sets) twice per week concurrently with specific water polo training. Before and after the 8-week intervention period, maximal bench press strength was measured and a speed-lactate test (5 × 200 m) was performed to determine the speed corresponding to lactate concentration of 4.0, 5.0, and 10.0 mmol · L(-1). Maximal strength was improved in both groups (HIIT4 × 4: 14 ± 4% vs. HIIT16 × 100: 19 ± 10%). Improvements in speed corresponding to 4.0, 5.0, and 10.0 mmol · L(-1) were shown only after HIIT4 × 4 (9 ± 5, 8 ± 3, 7 ± 2%, respectively; p < 0.01). However, HIIT16 × 100 was more effective in the differential velocity between 10.0 and 5.0 mmol · L(-) development (19 ± 20%, p = 0.03). During the precompetition season, HIIT and strength training together with specific water polo training performed concurrently improves muscle strength and allows specific adaptations enhancing swimming performance of elite water polo players.
We investigated the effectiveness of a short-duration training period including an overloaded (weeks 1 and 2) and a reduced training load period (weeks 3 and 4) on wellness, swimming performance and a perceived internal training load in eight high-level water-polo players preparing for play-offs. The internal training load was estimated daily using the rating of perceived exertion (RPE) and session duration (session-RPE). Perceived ratings of wellness (fatigue, muscle soreness, sleep quality, stress level and mood) were assessed daily. Swimming performance was evaluated through 400-m and 20-m tests performed before (baseline) and after the end of weeks 2 and 4. In weeks 3 and 4, the internal training load was reduced by 19.0 ± 3.8 and 36.0 ± 4.7%, respectively, compared to week 1 (p = 0.00). Wellness was improved in week 4 (20.4 ± 2.8 AU) compared to week 1 and week 2 by 16.0 ± 2.2 and 17.3 ± 2.9 AU, respectively (p =0.001). At the end of week 4, swimming performance at 400-m and 20-m tests (299.0 ± 10.2 and 10.2 ± 0.3 s) was improved compared to baseline values (301.4 ± 10.9 and 10.4 ± 0.4 s, p < 0.05) and the overloading training period (week 2; 302.9 ± 9.0 and 10.4 ± 0.4 s, p < 0.05). High correlations were observed between the percentage reduction of the internal training load from week 4 to week 1 (-25.3 ± 5.5%) and the respective changes in 20-m time (-2.1 ± 2.2%, r = 0.88, p < 0.01), fatigue perception (39.6 ± 27.1%), muscle soreness (32.5 ± 26.6%), stress levels (25.6 ± 15.1%) and the overall wellness scores (28.6 ± 21.9%, r = 0.74-0.79, p < 0.05). The reduction of the internal training load improved the overall perceived wellness and swimming performance of players. The aforementioned periodization approach may be an effective training strategy in the lead-up to play-off tournaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.