Background Nonsteroidal anti-inflammatory drugs (NSAIDs), conventional and selective cyclooxygenase-2 (COX-2) inhibitors, are among the most widely used medications for the treatment of various inflammatory conditions. There is strong evidence of a possible association between the use of these drugs and the relapse of inflammatory bowel diseases (IBD). Objective Our objective was to examine the literature regarding the exacerbation of IBD associated with the use of conventional NSAIDs and selective COX-2 inhibitors and the underlying pathogenetic mechanisms. Study design We reviewed articles, including original papers, controlled trials, case reports, reviews, and editorials published in English at the PubMed, Scopus Database, and Science Direct database, searching with the following keywords: nonsteroidal anti-inflammatory drugs (NSAIDs), COX-2 inhibitors, Coxibs, inflammatory bowel diseases (IBD), ulcerative colitis (UC), Crohn's disease (CD). Results There is substantial evidence that exacerbation of IBD happens after treatment with NSAIDs, but the available data remain conflicting, and it is not clear whether selective COX-2 inhibitors are safer than traditional NSAIDs. However, there is some evidence that selective COX-2 inhibition and COX-1 inhibition (with low-dose aspirin) appear to be well-tolerated in the short term. Regarding the mechanisms of relapse, the reduction of prostaglandins appears to be the hallmark of the NSAIDs adverse effects. Conclusions Further randomized, double-blind, controlled trials should be performed to address this issue, and more in vitro studies to identify the pathways involved are required.
Pancreatic β-cells are responsible for production and secretion of insulin in response to increasing blood glucose levels. Defects in β-cell function lead to hyperglycemia and diabetes mellitus. Here, we show that CNOT3, a CCR4-NOT deadenylase complex subunit, is dysregulated in islets in diabetic db/db mice, and that it is essential for murine β cell maturation and identity. Mice with β cell-specific Cnot3 deletion (Cnot3βKO) exhibit impaired glucose tolerance, decreased β cell mass, and they gradually develop diabetes. Cnot3βKO islets display decreased expression of key regulators of β cell maturation and function. Moreover, they show an increase of progenitor cell markers, β cell-disallowed genes, and genes relevant to altered β cell function. Cnot3βKO islets exhibit altered deadenylation and increased mRNA stability, partly accounting for the increased expression of those genes. Together, these data reveal that CNOT3-mediated mRNA deadenylation and decay constitute previously unsuspected post-transcriptional mechanisms essential for β cell identity.
Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic beta cells. Whether mitofusin gene expression, and hence mitochondrial network integrity, is important for glucose or incretin signalling has not previously been explored. Here, we generated mice with beta cell-selective, adult-restricted deletion of the mitofusin genes Mfn1 and Mfn2 (βMfn1/2 dKO). βMfn1/2 dKO mice displayed elevated fed and fasted glycaemia and a >five-fold decrease in plasma insulin. Mitochondrial length, glucose-induced polarisation, ATP synthesis, cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in βMfn1/2 dKO mice and GLP-1 or GIP receptor agonists largely corrected defective GSIS through enhanced EPAC-dependent signalling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the beta cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in beta cells, the potential contributions of altered mitochondrial dynamics to diabetes development and the impact of incretins on this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.