Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of SNARE-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as α-synuclein, remain unclear. Here, we find that maintenance of continuous presynaptic SNARE-complex assembly required a non-classical chaperone activity mediated by synucleins. Specifically, α-synuclein directly bound to the SNARE-protein synaptobrevin-2/VAMP2, and promoted SNARE-complex assembly. Moreover, triple knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and perished prematurely. Thus, synucleins may function to sustain normal SNAREcomplex assembly in a presynaptic terminal during aging.In presynaptic terminals, neurotransmitter release requires a tightly coordinated membrane fusion machinery whose central components are soluble NSF attachment protein receptor (SNARE) and Sec1/Munc18-like proteins (1-3). Terminals release neurotransmitters thousands of times per minute; during each release reaction, SNARE-complex assembly and disassembly generates highly reactive unfolded SNARE protein intermediates, rendering the terminals potentially vulnerable to activity-dependent degeneration. Indeed, much evidence points to presynaptic terminals as an initiation site for neurodegeneration (4-6), and knockout (KO) of at least one presynaptic chaperone protein, cysteine string protein-α (CSPα), causes fulminant neurodegeneration in mice (7). Synucleins are abundant presynaptic proteins that are expressed from three genes (α-, β-and γ-synuclein; 8). α-Synuclein is involved in neurodegeneration (9-11), and γ-synuclein may contribute to progression of many types of cancer (12). Synucleins may modify neurotransmitter release (13,14), but their physiological functions remain unknown. Strikingly, transgenic expression of α-synuclein abolishes the lethal neurodegeneration induced by KO of CSPα, whereas deletion of endogenous synucleins accelerates this neurodegeneration (15). CSPα KO mice exhibit decreased levels of the SNARE protein SNAP-25 and impaired SNARE-complex assembly, suggesting a link between SNARE-complex assembly and neurodegeneration. α-* To whom correspondence should be addressed: tcs1@stanford.edu. HHMI Author Manuscript HHMI Author Manuscript HHMI Author ManuscriptSynuclein rescues SNARE-complex assembly but not SNAP-25 levels (15). This result indicates that α-synuclein may enhance SNARE-protein function, and thereby compensate for the CSPα deletion. To address this hypothesis, we here examine the role of α-synuclein in SNARE-complex assembly and in the maintenance of continuous SNARE-cycling in presynaptic terminals over the lifetime of an animal.We imm...
Hippocampal CA1 region neurons specifically target latrophilin-2 (Lphn2), an adhesion-type GPCR, to dendritic spines in the stratum lacunosum-moleculare. In this study, Lphn2 controls assembly of excitatory synapses formed by presynaptic entorhinal cortex afferents but not by Schaffer-collateral afferents, suggesting a synaptic recognition function.
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is unknown whether the mature dentate gyrus granule cells (mature DG GCs) also contribute. We deleted Serotonin 1A receptor (5HT1AR; a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the Hypothalamic-Pituitary-Adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult born granule cells (abGCs) showed normal fluoxetine responses. Importantly, 5HT1AR deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.