There are several reasons to expect that recognising word order errors in a text will be a difficult problem, and recognition rates reported in the literature are in fact low. Although grammatical rules constructed by computational linguists improve the performance of a grammar checker in word order diagnosis, the repairing task is still very difficult. This paper describes a method to repair any sentence with wrong word order using a statistical language model (LM). A good indicator of whether a person really knows a language is the ability to use the appropriate words in a sentence in correct word order. The "scrambled" words in a sentence produce a meaningless sentence. Most languages have a fairly fixed word order. This paper introduces a method, which is language independent, for repairing word order errors in sentences using the probabilities of most typical trigrams and bigrams extracted from a large text corpus such as the British National Corpus (BNC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.