Summary Use of accelerometers is now widespread within animal biologging as they provide a means of measuring an animal's activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data, there is a natural dependence between observations of behaviour, a fact that has been largely ignored in most analyses. Analyses of acceleration data where serial dependence has been explicitly modelled have largely relied on hidden Markov models (HMMs). Depending on the aim of an analysis, an HMM can be used for state prediction or to make inferences about drivers of behaviour. For state prediction, a supervised learning approach can be applied. That is, an HMM is trained to classify unlabelled acceleration data into a finite set of pre‐specified categories. An unsupervised learning approach can be used to infer new aspects of animal behaviour when biologically meaningful response variables are used, with the caveat that the states may not map to specific behaviours. We provide the details necessary to implement and assess an HMM in both the supervised and unsupervised learning context and discuss the data requirements of each case. We outline two applications to marine and aerial systems (shark and eagle) taking the unsupervised learning approach, which is more readily applicable to animal activity measured in the field. HMMs were used to infer the effects of temporal, atmospheric and tidal inputs on animal behaviour. Animal accelerometer data allow ecologists to identify important correlates and drivers of animal activity (and hence behaviour). The HMM framework is well suited to deal with the main features commonly observed in accelerometer data and can easily be extended to suit a wide range of types of animal activity data. The ability to combine direct observations of animal activity with statistical models, which account for the features of accelerometer data, offers a new way to quantify animal behaviour and energetic expenditure and to deepen our insights into individual behaviour as a constituent of populations and ecosystems.
Abstract. The behavior of colony-based marine predators is the focus of much research globally. Large telemetry and tracking data sets have been collected for this group of animals, and are accompanied by many empirical studies that seek to segment tracks in some useful way, as well as theoretical studies of optimal foraging strategies. However, relatively few studies have detailed statistical methods for inferring behaviors in central place foraging trips. In this paper we describe an approach based on hidden Markov models, which splits foraging trips into segments labeled as "outbound", "search", "forage", and "inbound". By structuring the hidden Markov model transition matrix appropriately, the model naturally handles the sequence of behaviors within a foraging trip. Additionally, by structuring the model in this way, we are able to develop realistic simulations from the fitted model. We demonstrate our approach on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island in the Southern Ocean. We discuss the differences between our 4-state model and the widely used 2-state model, and the advantages and disadvantages of employing a more complex model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.