The SIM-G is a waterproof head impact sensor that has been previously evaluated for use in a headband, but not yet in a mode of attachment suitable for water polo. For this study, a CADEX linear impactor was used to impact a Hybrid III headform while wearing either a headband or modified water polo cap, each housing a SIM-G. In both headgears, the SIM-G consistently underestimated peak linear acceleration ( p < .001) and peak rotational velocity ( p < .001), and consistently overestimated peak rotational acceleration ( p < .001) relative to the headform. These inaccuracies are consistent with previous evaluations of the SIM-G, but notably, impact magnitudes did not differ between the different modes of attachment ( p > .198). The proprietary SIM-G algorithm used for classifying false/true positives performed poorly at the back and crown impact locations in both the water polo cap and headband, but accuracy of this algorithm did not significantly differ between the water polo cap and headband (60.5% vs 49.4%, respectively). The SIM-G’s ability to correctly predict impact location also performed poorly in both headgears when impacts occurred at the crown location, but was significantly better overall in the water polo cap than the headband (80.2% vs 55.6%, respectively). These results demonstrate that the SIM-G exhibits shared limitations and a similar performance overall when placed in either a headband or water polo cap. Potential explanations for the inaccuracies of the SIM-G, as well as methods of optimizing its application in sports, are discussed.
Recent reports have demonstrated that there is a serious risk of head impact and injury in water polo. The use of protective headgear in contact sports is a commonly accepted strategy for reducing the risk of head injury, but there are few available protective headgears for use in water polo. Many of those that are available are banned by the sport's governing bodies due to a lack of published data supporting the effectiveness of those headgears in reducing head impact kinematics. To address this gap in knowledge, we launched a water polo ball at the forehead of an anthropomorphic testing device fitted with either a standard water polo headgear or one of two protective headgears. We selected a range of launch speeds representative of those observed across various athlete ages. Mixed-model ANOVAs revealed that, relative to standard headgear, protective headgears reduced peak linear acceleration (by 10.8-21.6%; p < 0.001), and peak rotational acceleration (by 24.5-48.5%; p < 0.001) induced by the simulated ball-to-forehead impacts. We discuss the possibility of using protective headgears in water polo to attenuate head impact kinematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.