The goal of the Sea2Cloud project is to study the interplay between surface ocean biogeochemical and physical properties, fluxes to the atmosphere and ultimately their impact on cloud formation under minimal direct anthropogenic influence. Here we present an interdisciplinary approach, combining atmospheric physics and chemistry with marine biogeochemistry, during a voyage between 41 and 47°S in March 2020. In parallel to ambient measurements of atmospheric composition and seawater biogeochemical properties, we describe semi-controlled experiments to characterize nascent sea spray properties and nucleation from gas-phase biogenic emissions. The experimental framework for studying the impact of the predicted evolution of ozone concentration in the Southern Hemisphere is also detailed. After describing the experimental strategy, we present the oceanic and meteorological context including provisional results on atmospheric thermodynamics, composition, and flux measurements. In situ measurements and flux studies were carried out on different biological communities by sampling surface seawater from subantarctic, subtropical and frontal water masses. Air-Sea-Tanks (ASIT) were used to quantify biogenic emissions of trace gases under realistic environmental conditions, with nucleation observed in association with biogenic seawater emissions. Sea spray continuously generated produced sea spray fluxes of 34% of organic matter by mass, of which 4% particles had fluorescent properties, and which size distribution ressembled the one found in clean sectors of the Southern Ocean. The goal of Sea2Cloud is to generate realistic parameterizations of emission flux dependences of trace gases and nucleation precursors, sea spray, cloud condensation nuclei and ice nuclei using seawater biogeochemistry, for implementation in regional atmospheric models.
We analyzed the seawater biogeochemistry for Dissolved Organic Carbon (DOC) composition, including Amino Acids, Fatty acids, Chromophoric and Fluorescent DOM, and phytoplankton speciation using Flow Cytometry, optical microscopy and Flowcam. Further details of these seawater measurements are provided in Sellegri et al.
information Figure S1: Sea2Cloud phytoplankton carbon content in the SML and SSW of (a) diatom, (b) dinoflagellate, and (c) small flagellate. Water mass type is indicated by the label at the top of the figure and also the shading. There was no SML sample at station 2-STF.
<p>Understanding ocean-cloud interactions and their effect on climate requires that atmospheric new particle formation is characterized. Yet, the process of particle formation from marine biogenic gaz-phase emissions has not been evidenced in the open ocean lower atmosphere, partly due to the naturally low concentrations of these particles in remote oceanic places. Here we show, using new ship-borne air-sea interface enclosures, that new particles are formed in relation to marine micro-biology present in the seawater. The chemical analysis of newly formed clusters with API-ToF-MS shows unexpected results, implicating nucleating coumpounds and pathways that are usually not taken into account in nucleation processes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.