Late gestation fetal rat hepatocytes can proliferate under defined in vitro conditions in the absence of added mitogens. However, this capacity declines with advancing gestational age of the fetus from which the hepatocytes are derived. The present studies were undertaken to investigate this change in fetal hepatocyte growth regulation. Examination of E19 fetal hepatocyte primary cultures using immunocytochemistry for 5-bromo-2'-deoxyuridine (BrdU) incorporation showed that approximately 80% of these cells traverse S-phase of the cell cycle over the first 48 h in culture. Similarly, 65% of E19 hepatocytes maintained in culture under defined mitogen-free conditions for 24 h showed nuclear expression of proliferating cell nuclear antigen (PCNA). These in vitro findings correlated with a high level of immunoreactive PCNA in immunofluorescent analyses of E19 liver. In contrast, E21 (term) liver showed little immunoreactive PCNA. The in vivo finding was recapitulated by in vitro studies showing that E21 hepatocytes had low levels of BrdU incorporation during the first day in culture and were PCNA negative shortly after isolation. However, within 12 h of plating, E21 hepatocytes showed cytoplasmic staining for PCNA. Although maintained under mitogen-free conditions, PCNA expression progressed synchronously to a nucleolar staining pattern at 24 to 48 h in culture followed by intense, diffuse nuclear staining at 60 h which disappeared by 72 h. This apparently synchronous cell cycle progression was confirmed by studies showing peak BrdU incorporation on the third day in culture. Whereas DNA synthesis by both E19 and E21 hepatocytes was potentiated by transforming growth factor alpha (TGF alpha), considerable mitogen-independent DNA synthesis was seen in hepatocytes from both gestational ages. These results may indicate that fetal hepatocytes come under the influence of an exogenous, in vivo growth inhibitory factor as term approaches and that this effect is relieved when term fetal hepatocytes are cultured.
Fetal growth retardation, a common end point for a variety of conditions affecting mother and fetus, is associated with reduced liver mass. We have performed studies to determine the mechanism for decreased liver mass in a maternal starvation model of fetal growth restriction in the rat. Pregnant dams were deprived of food for 48 h before delivery on embryonic day 19 (E19). Fetal body weight was not affected. However, fetal liver weight was reduced by approximately 15%. Immunostaining of fetal liver for proliferating cell nuclear antigen and flow cytometry on isolated fetal hepatocytes showed G1 cell cycle arrest in samples from starved dams. Based on our prior studies showing attenuated hepatic insulin signaling in the late gestation fetal rat, we tested the hypothesis that G1 arrest in our model might be due to altered nutrient signaling. Fetal plasma amino acid analyses showed no decrease in branched-chain amino acids, but arginine concentrations were decreased in fetuses of fasted mothers. Reduced arginine in E19 fetal hepatocyte culture media was associated with decreased DNA synthesis. Whereas levels of cyclins D and E were unchanged in fetal hepatocytes exposed to low arginine, cyclin E-dependent kinase activity was reduced. Low arginine also induced changes in the translational machinery, indicative of impaired signaling through the nutrient sensing kinase mammalian target of rapamycin. Our results are consistent with the hypothesis that restricted nutrient availability signals to the hepatocyte cell cycle in fetuses of fasted mothers, thereby accounting for decreased hepatocyte proliferation and liver mass. Abbreviations CKI, cyclin-dependent kinase inhibitor DAPI, 4',6-diamidino-2-phenylindole E19, embryonic day 19 MEM␣, minimal essential media ␣ mTOR, mammalian target of rapamycin PCNA, proliferating cell nuclear antigen TUNEL, TdT-mediated dUTP nick-end labeling Impaired fetal somatic growth is a frequent occurrence and a common end point for a spectrum of disorders affecting the mother and fetus. Given that hepatic growth and functional differentiation are required for normal metabolic homeostasis during the perinatal period, the liver represents an important target for the various mechanisms that can limit fetal growth. In the rat, the latter portion of gestation is a period of time when hepatocytes proliferate at a high rate (1,2), resulting in a marked increase in liver mass over the last several days of gestation. A variety of rat models, all of which are associated with retardation of fetal somatic growth, have been shown to be associated with impaired hepatic growth (3-5). This association may be a consequence of impaired hepatocyte proliferation, decreased cell size as a function of impaired cell growth, increased cell loss via apoptosis, or a combination of all three factors.Insulin has long been assigned a key role in the regulation of fetal somatic growth, with fetal hyperinsulinemic and hypoinsulinemic states showing parallel changes in somatic and hepatic growth (6). Although this has be...
Hepatocyte proliferation and differentiation occur simultaneously during late mammalian gestation. We hypothesized that regulation of hepatocyte growth and differentiation would be coordinated in late gestation fetal hepatocyte cultures such that proliferation would be most active in a population of less well-differentiated cells. Cultured fetal hepatocytes (embryonic d 19 and 21; E19 and E21) were studied using double staining immunofluorescent microscopy. Differentiation was assessed as staining for alpha-fetoprotein (AFP), three markers of enzymic differentiation (glucokinase [GK], phosphoenolpyruvate carboxykinase [PEPCK], and carbamoyl phosphate synthase [CPS]), and a hepatocyte cell-cell adhesion molecule (C-CAM). Proliferation was assessed using immunocytochemical detection of proliferating cell nuclear antigen (PCNA) or 5-bromo-2'-deoxy-uridine (BrdU) incorporation into DNA. Fetal hepatocyte cultures consisted of a heterogeneous population of cells, slightly more than half of which were proliferative under defined, growth factor-free conditions. These cultures were heterogeneous for AFP expression. There was no correlation between the expression of AFP and PCNA or AFP and S-phase entry (BrdU staining) during the first 48 h in culture. Similar results were obtained in staining for the enzymic differentiation markers and C-CAM. In addition, the differentiation status of cultured fetal hepatocytes was unrelated to a presumed indicator of mature growth regulation, mitogenic responsiveness to transforming growth factor alpha (TGFalpha), and hepatocyte growth factor (HGF). Finally, absence of any correlation between proliferation and differentiated phenotype was supported by in vivo studies using staining for PCNA, AFP, CPS, and PEPCK in liver sections. These results indicate that the developmental program governing differentiation of late gestation fetal rat hepatocytes is independent from mechanisms controlling proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.