The current work compares the deformation behavior of CoCrFeMnNi and CoCrNi in the temperature interval between 295 K and 8 K through a series of quasi-static tensile tests.Temperature-dependent yield stress variation was found to be similarly high in these two alloys.Previous investigations only extended down to 77 K and showed that a small amount of εmartensite was formed in CoCrNi while this phase was not observed in CoCrFeMnNi. The present study extends these investigations down to 8 K where similar low levels of ε-martensite were presently detected. Based on this result, a rough assessment has been made estimating the importance of deformation twinning to the strength. The relative work hardening rates of CoCrFeMnNi and CoCrNi were comparable in value despite the differences in ε-martensite formation during deformation. CoCrFeMnNi deforms by dislocation slip and deformation twinning while deformation in CoCrNi is also accommodated by the formation of ε-martensite at cryogenic temperatures. Additionally, CoNi, a solid solution from the Co-Cr-Fe-Mn-Ni system with low strength, was used for comparison, showing contrasting deformation behavior at cryogenic temperatures.
Selective Laser Melting (SLM) was investigated as new processing route for strongly hypereutectic AlSi alloys for thermal management applications in space industry. Processing conditions, microstructure and thermal expansion behavior were analyzed for AlSi10Mg+Si alloys with 25 wt% and 50 wt% Si fabricated by in-situ SLM of powder mixtures. For both Si compositions parts with densities ≥ 99% could be achieved using laser power ≥ 275 W and scan speeds ≥ 1500 mm/s for the alloy containing 25 wt% Si and laser power of 400 W and scan speeds ≥ 1500 mm/s for the alloy containing 50 wt% Si. Considerable refinement of primary and eutectic Si was achieved for both Si compositions due to the high cooling rates of SLM. The mean particle size for the coarse primary Si of the 50 wt% Si containing alloy was below 10 µm. Additionally, unmolten Si powder particles were observed. Measurements of the coefficient of thermal expansion (CTE) showed the tailorability of CTE with adjustment of Si content. A decrease in CTE of 43% compared to pure Al was achieved at a total Si content of 50 wt%. Experimental data was close to model calculations based on the rule of mixture and the Turner model depending on the different microstructures of the two alloy compositions.
Serrated plastic deformation at temperatures close to 0 K has been previously reported in some metals and alloys, and is associated with two possible origins: (i) thermomechanical instability or (ii) mechanical instability. While some recent results indicate that serrations are a mechanical dislocation-based phenomenon, a comprehensive model does not exist. CoCrFeMnNi, an expectedly ideal candidate, exhibits severe serrated plastic deformation with large stress drops in excess of 100 MPa. Furthermore, it also shows cryogenic serrated plastic deformation at a higher temperature (35 K) than previously reported for any other alloy. The exacerbated nature of serrated plastic deformation in CoCrFeMnNi led to the following inferences: (i) temperature and dislocation density are indisputable controlling parameters for cryogenic serrated plastic deformation and they cannot supersede each another; (ii) a phenomenological model is elucidated based on the increasing difficulty for cross-slip with decreasing temperature, leading to sudden massive dislocation proliferation event;(iii) the model establishes a gradual transition from completely non-serrated to completely serrated deformation, mediated by cross-slip, as opposed to the conventional model which proposed a discrete transition; (iv) solute dislocation interaction and associated Stacking Fault Energy (SFE) during deformation plays a key role in controlling dislocation constriction and cross-slip and correspondingly serrated plastic deformation; (v) the need/direct influence of deformation twinning, transformation induced plasticity and especially thermomechanical factors on serrated plastic deformation is invalidated. Some of these points were further clarified through comparisons with CoCrNi and CoNi, also presented in the present article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.