Coordination of intralimb kinematics appears to improve in response to LT with therapist assistance as needed. Fixed assistance, as provided by this form of robotic guidance during LT, however, did not alter intralimb coordination.
Understanding the potential causes of both reduced gait speed and compensatory frontal plane kinematics during walking in individuals post-stroke may be useful in developing effective rehabilitation strategies. Multiple linear regression analysis was used to select the combination of paretic limb impairments (frontal and sagittal plane hip strength, sagittal plane knee and ankle strength, and multi-joint knee/hip torque coupling) which best estimate gait speed and compensatory pelvic obliquity velocities at toeoff. Compensatory behaviors were defined as deviations from control subjects’ values. The gait speed model (n = 18; p = 0.003) revealed that greater hip abduction strength and multi-joint coupling of sagittal plane knee and frontal plane hip torques were associated with decreased velocity; however, gait speed was positively associated with paretic hip extension strength. Multi-joint coupling was the most influential predictor of gait speed. The second model (n = 15; p < 0.001) revealed that multi-joint coupling was associated with increased compensatory pelvic movement at toeoff; while hip extension and flexion and knee flexion strength were associated with reduced frontal plane pelvic compensations. In this case, hip extension strength had the greatest influence on pelvic behavior. The analyses revealed that different yet overlapping sets of single joint strength and multi-joint coupling measures were associated with gait speed and compensatory pelvic behavior during walking post-stroke. These findings provide insight regarding the potential impact of targeted rehabilitation paradigms on improving speed and compensatory kinematics following stroke.
Background and Purpose-Although stroke survivors often display abnormal joint torque patterns, studies of torquecoupling in the lower limb are lacking, despite their potential impact on gait abnormalities. Methods-Twenty-two chronic ambulating stroke subjects and 11 age-matched control subjects produced isometric hip torques in the frontal and sagittal planes with the hemiparetic leg (or randomly selected leg for the control group) in postures that resemble stages of gait. The involuntary knee torques were also recorded although no feedback or instructions were given. Results-In the toe-off and midswing postures, the stroke group had a significant torque bias toward extension and adduction, whereas the control group had a symmetric torque space. The stroke group also produced significantly smaller torques than the control group in the flexion and abduction/flexion directions. Finally, the stroke group displayed abnormal coupling of knee extension with hip adduction, unique to the toe-off position. Conclusions-Whereas gait abnormalities after stroke have been attributed to a number of factors, including sagittal plane strength impairments at the hip, knee, and ankle, our findings indicate that neuromechanical changes after stroke may play a significant role in determining the nature of the movement abnormality. Specifically, abnormal hip adduction and knee extension torque coupling was observed, in addition to direction-specific hip torque weakness. Future studies are needed to delineate the differential contributions of each potential factor to gait abnormalities. Understanding the underlying neuromechanical changes after stroke may aid the development of rehabilitation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.