Inorganic phosphate (P(i)) is required for energy metabolism, nucleic acid synthesis, bone mineralization, and cell signaling. The activity of cell-surface sodium-phosphate (Na(+)-P(i)) cotransporters mediates the uptake of P(i) from the extracellular environment. Na(+)-P(i) cotransporters and organ-specific P(i) absorptive processes are regulated by peptide and sterol hormones, such as parathyroid hormone (PTH) and 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D(3)), which interact in a coordinated fashion to regulate P(i) homeostasis. Recently, several phosphaturic peptides such as fibroblast growth factor-23 (FGF-23), secreted frizzled related protein-4 (sFRP-4), matrix extracellular phosphoglycoprotein, and fibroblast growth factor-7 have been demonstrated to play a pathogenic role in several hypophosphatemic disorders. By inhibiting Na(+)-P(i) transporters in renal epithelial cells, these proteins increase renal P(i) excretion, resulting in hypophosphatemia. FGF-23 and sFRP-4 inhibit 25-hydroxyvitamin D 1alpha-hydroxylase activity, reducing 1alpha,25(OH)(2)D(3) synthesis and thus intestinal P(i) absorption. This review examines the role of these factors in P(i) homeostasis in health and disease.
Phosphorus plays a critical role in diverse biological processes, and therefore, the regulation of phosphorus balance and homeostasis are critical to the well-being of the organism. Changes in environmental, dietary and serum concentrations of inorganic phosphorus are detected by sensors that elicit changes in cellular function and alter the efficiency by which phosphorus is conserved. Short-term, post-cibal responses which occur independently of hormones previously thought to be important in phosphorus homeostasis may play a larger role than previously appreciated in the regulation of phosphorus homeostasis. Several hormones and regulatory factors such as the vitamin D endocrine system, parathyroid hormone, and the phosphatonins (FGF-23, sFRP-4, MEPE) among others, may play a role only in the long-term regulation of phosphorus homeostasis. In this review we will discuss how organisms sense changes in phosphate concentrations and how changes in hormonal factors result in the conservation or excretion of phosphorus.
The mechanisms by which phosphorus homeostasis is preserved in mammals are not completely understood. We demonstrate the presence of a mechanism by which the intestine detects the presence of increased dietary phosphate and rapidly increases renal phosphate excretion. The mechanism is of physiological relevance because it maintains plasma phosphate concentrations in the normal range after ingestion of a phosphate-containing meal. When inorganic phosphate is infused into the duodenum, there is a rapid increase in the renal fractional excretion of phosphate (FE Pi). The phosphaturic effect of intestinal phosphate is specific for phosphate because administration of sodium chloride does not elicit a similar response. Phosphaturia after intestinal phosphate administration occurs in thyro-parathyroidectomized rats, demonstrating that parathyroid hormone is not essential for this effect. The increase in renal FE Pi in response to the intestinal administration of phosphate occurs without changes in plasma concentrations of phosphate (filtered load), parathyroid hormone, FGF-23, or secreted frizzled related protein-4. Denervation of the kidney does not attenuate phosphaturia elicited after intestinal phosphate administration. Phosphaturia is not elicited when phosphate is instilled in other parts of the gastrointestinal tract such as the stomach. Infusion of homogenates of the duodenal mucosa increases FE Pi, which demonstrates the presence of one or more substances within the intestinal mucosa that directly modulate renal phosphate reabsorption. Our experiments demonstrate the presence of a previously unrecognized phosphate gut–renal axis that rapidly modulates renal phosphate excretion after the intestinal administration of phosphate.
Phosphate ions are critical for normal bone mineralization, and phosphate plays a vital role in a number of other biological processes such as signal transduction, nucleotide metabolism, and enzyme regulation. The study of rare disorders associated with renal phosphate wasting has resulted in the discovery of a number of proteins [fibroblast growth factor 23 (FGF-23), secreted frizzled related protein 4 (sFRP-4), matrix extracellular phosphoglycoprotein, and FGF 7 (FGF-7)] that decrease renal sodium-dependent phosphate transport in vivo and in vitro. The "phosphatonins," FGF-23 and sFRP-4, also inhibit the synthesis of 1alpha,25-dihydroxyvitamin D, leading to decreased intestinal phosphate absorption and further reduction in phosphate retention by the organism. In this review, we discuss the biological properties of these proteins, alterations in their concentrations in various clinical disorders, and their possible physiological role.
Conflict of interest:The authors have declared that no conflict of interest exists. Nonstandard abbreviations used: tumor-induced osteomalacia (TIO); parathyroid hormone (PTH); parathyroid hormonerelated protein (PTHrP); opossum kidney (OK); serial analysis of gene expression (SAGE); secreted frizzled-related protein-4 (sFRP-4); mean arterial blood pressure (MAP); thyro-parathyroidectomized (TPTX); phosphate diet (Pi); fractional excretion of phosphate (FEPi); fractional sodium excretion (FENa); fractional excretion of calcium (FECa); X-linked hypophosphatemic rickets (XLH); autosomal dominant hypophosphatemic rickets (ADHR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.