Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins.
BackgroundChromatin insulators shield promoters and chromatin domains from neighboring enhancers or chromatin regions with opposing activities. Insulator-binding proteins and their cofactors mediate the boundary function. In general, covalent modification of proteins by the small ubiquitin-like modifier (SUMO) is an important mechanism to control the interaction of proteins within complexes.ResultsHere we addressed the impact of dSUMO in respect of insulator function, chromatin binding of insulator factors and formation of insulator speckles in Drosophila. SUMOylation augments the enhancer blocking function of four different insulator sequences and increases the genome-wide binding of the insulator cofactor CP190.ConclusionsThese results indicate that enhanced chromatin binding of SUMOylated CP190 causes fusion of insulator speckles, which may allow for more efficient insulation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13072-017-0140-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.